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Abstract 

 

Artificial neural networks (ANNs) are useful computing system which can be trained to 

learn complex relationship between two or more variables. It learns from examples and 

storage the knowledge for future use. In this study, a model for predicting the ultimate 

strength of circular concrete filled steel tube (CCFST) beam-columns under eccentric axial 

loads has been developed in ANN. The available experimental results for 181 specimens 

obtained from previous studies were used to build the proposed model. The predicted 

strengths obtained from the proposed ANN model were compared with the experimental 

values and current design provision for CCFST beam-columns (AISC and Eurocode4). 

Results showed that the predicted values by the proposed ANN model were very close to the 

experimental values and were more accurate than the AISC and Eurocode4 values. As a 

result, ANN provided an efficient alternative method in predicting the ultimate strength of 

CCFST beam-columns. 

Keywords: beam-columns, artificial neural networks, concrete filled steel tube. 

 

اَبىب حذيذي  راث يقطعالاعًذة  -عخباث حقذير انًقاويت انقصىي نهفي اسخخذاو انشبكاث انعصبيت 

 دائري يًهىء بانخرساَت

  خهصًسخان

اْ اٌشجىبد اٌؼظج١خ ٔظبَ ِف١ذ ِّىٓ رذس٠جٗ ١ٌزؼٍُّ اٌؼلالبد اٌّؼمذح ث١ٓ ػذح ِزغ١شاد ِٓ خلالاي إدخلابي ِغّٛػلاخ ِلآ 

 راد ِمطلاغ  الأػّلاذح-اٌؼزجلابد زملاذ٠ش ِمبِٚلاخ ثٕبء شجىخ ػظلاج١خ ٌاٌٙذف اٌشئ١غٟ ِٓ اٌذساعخ اٌؾب١ٌخ ٘ٛ الاِضٍخ اٌؾم١م١خ. اْ 

( 000علازؼٍّذ إٌزلابئظ اٌّخزجش٠لاخ ٌلا  . ٚللاذ اٚاٌّؼشّػخ اٌٝ أؽّلابي ػلاغؾ لاِشوض٠لاخ أجٛة ؽذ٠ذٞ دائشٞ ٍِّٛء ثبٌخشعبٔخ

ػ١ّٕخ  ِغزخٍظخ ِٓ ثؾٛس عبثمخ( فٟ ثٕبء اٌشجىخ اٌّمزشؽخ. ٚلٛسٔذ اٌم١ُ اٌّمذّسح ِٓ ٘زٖ اٌشجىخ ِغ اٌملا١ُ اٌّخزجش٠لاخ ِٚلاغ 

اٌم١ُ اٌّملاذّسح  أْإٌزبئظ د ظٙشٌمذ أ. AISC  ٚEurocode4اٌم١ُ اٌّؾغٛثخ ػٍٝ ػٛء ششؽ اٌزظ١ُّ فٟ اٌىٛد٠ٓ اٌؼب١١ٌّٓ 

ِلالآ اٌشلالاجىخ اٌّمزشؽلالاخ وبٔلالاذ لش٠جلالاخ علالاذا  ِلالآ اٌملالا١ُ اٌّخزجش٠لالاخ ٚوبٔلالاذ أدقّ ِلالآ اٌملالا١ُ اٌّؾغلالاٛثخ ؽغلالات ِٛاطلالافبد  اٌىلالاٛد٠ٓ 

 .الأػّذح -اٌّزوٛس٠ٓ. ٚثبٌزبٌٟ فبٔٗ ِٓ اٌّّىٓ اعزخذاَ اٌشجىبد اٌؼظج١خ فٟ رمذ٠ش ِمبِٚخ ِضً ٘زا إٌٛع ِٓ اٌؼزجبد 
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1. Introduction 

Beam-columns are members that are subjected simultaneously to axial forces and bending 

moments. Thus, their behavior falls somewhere between that of a pure axially loaded column 

and that of a beam with only moments applied.  Also, their behavior must include the effects 

of the axial loads on the flexural stiffness. This is usually referred to as the second-order 

elastic analysis. To understand the behavior of beam-columns, it is common practice to look 

at the response as predicted through an interaction equation between axial loads and moments. 

Numerous different structural systems are used today to meet performance or functional 

requirements in structures. Composite construction is widely used in structural systems to 

achieve long spans, lower story heights, and provide additional lateral stiffness. Composite 

construction uses the structural and constructional advantages of both concrete and steel. 

Concrete has low material costs, good fire resistance, and is easy to place. Steel has high 

ductility and high strength-to-weight and stiffness-to-weight ratios. When properly combined, 

steel and concrete can produce synergetic savings in initial and life-cycle costs. Currently 

composite floor systems are widely utilized in steel buildings in the form of composite beams 

and joists/trusses. There are two basic kinds of composite beams or columns: steel sections 

encased in concrete (steel-reinforced concrete sections or SRC) and steel sections filled with 

concrete (concrete filled tubes or CFT). The latter can be either circular (CCFT) or 

square/rectangular (RCFT) in cross-section. In composite columns additional synergies 

between concrete and steel are possible: (a) in concrete-filled tubes, the steel increases the 

strength of the concrete because of its confining effect, the concrete inhibits local buckling of 

the steel, and the concrete formwork can be omitted; and (b) in encased sections, the concrete 

delays failure by local buckling and acts as fireproofing while the steel provides substantial 

residual gravity load-carrying capacity after the concrete fails. 

The structural behavior of circular concrete filled steel tube (CCFST) beam-columns has 

been investigated through many experimental tests [1-5]. The main objective of these tests 

was to determine the different parameters that influence the beam-columns structural 

behavior. 

For the last two decades, different modeling methods based on artificial neural networks 

(ANN) have become popular and have been used by many researchers for a variety of civil 

engineering applications [6-10]. ANNs are natural complementary tools in building intelligent 

systems and are low level computational structures that perform well when dealing with raw 

data. The basic strategy for developing ANN systems based models for material behavior is to 
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train ANN systems on the results of a series of experiments using that material. If the 

experimental results contain the relevant information about the material behavior, then the 

trained ANN systems will contain sufficient information about material‘s behavior to qualify 

as a material model. Such trained ANN systems not only would be able to reproduce the 

experimental results, but also they would be able to approximate the results in other 

experiments through their generalization capability. 

The aim of this study is to propose a model using ANN to predict the ultimate strength of 

CCFST beam-columns under eccentric axial loads (Fig. (1)). 

 

 

 

 

 

 
 

Fig. (1) CCFST beam-column under eccentric axial loads 

 

2. Artificial Neural Networks (ANN) 

 

2.1. General 
 

An Artificial Neural Network (ANN) is a computational tool that attempts to simulate 

the architecture and internal features of the human brain and nervous system. Comparing 

ANN with other digital computing techniques, ANNs are advantageous because of their 

special features such as the possibility of non–linear modeling relationship between input and 

target specially for problem where the relationships are not very well known and low sensitive 

to error. 

The first structural engineering application of ANN goes back only to the year 1990. 

Since then a wide range of applications have emerged. These applications include [11]:- 

- Mapping of input–output data of non–linear relation for materials and structures. 

- Damage identification of structures and structural control against dynamic loads. 

- Preliminary design of structure. 

- Optimum design and analysis. 
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ANNs are enormously parallel systems composed of many processing elements 

connected by links of variable weights. Generally, ANNs are made of an input layer of 

neurons, sometimes referred to as nodes or processing units, one or several hidden layer of 

neurons and output layer of neurons. The neighboring layers are fully interconnected by 

weight. The input layer neurons receive information from the outside environment and 

transmit them to the neurons of the hidden layer without performing any calculation. Layers 

between the input and output layers are called hidden layers and may contain a large number 

of hidden processing units. All problems, which can be solved by a perceptron can be solved 

with only one hidden layer, but it is sometimes more efficient to use two or three hidden 

layers. Finally, the output layer neurons produce the network predictions to the outside world. 

Figure (2) shows a symbol neuron model with input, sum function, sigmoid activation 

function and output. The input to a neuron from another neuron is obtained by multiplying the 

output of the connected neuron by the synaptic strength of the connection between them. The 

weighted sums of the input components (net)j are calculated by using the following equation: 

 

  


n

1i
iijj bYW)net( ,                                                                                                 (1) 

 

Where (net)j is the weighted sum of the jth neuron for the input received from the preceding 

layer with n neurons, Wij is the weight between the jth neuron in the preceding layer, Yi is the 

output of the ith neuron in the preceding layer. The quantity b is called the bias and is used to 

model the threshold. The output signal of the neuron, denoted by Yj in Fig. (2), is related to 

the network input (net)j via a transformation function called the activation function. The most 

common activation functions are sigmoid and Gaussian function due to their nonlinearity 

property. The output of the jth neuron Yj is calculated by using Eq. (2) with a sigmoid 

function as follows: 

j
)net(a
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Where α is a constant used to control the slope of the semi-linear region. The sigmoid 

function represented by Eq. (2) gives outputs in the range (0,1). 
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Fig. (2) A simple neuron model. 

 

 

2.2. Feed-forward Neural Networks 
 

Feed-forward NNs are the most popular and most widely used models in many practical 

applications. They are known by many different names, such as multilayer feed-forward and 

multilayer perceptrons. In a feed-forward NN, the artificial neurons are arranged in layers, 

and all the neurons in each layer have connections to all the neurons in the next layer. 

However, there is no connection between neurons of the same layer or the neurons which are 

not in successive layers. In general, the feed-forward NN consists of one input layer, one or 

two hidden layers and one output layer of neurons. The input layer receives input information 

and passes it onto the neurons of the hidden layer(s), which in turn pass the information to the 

output layer. The output from the output layer is the prediction of the net for the 

corresponding input supplied at the input nodes. Each neuron in the network behaves in the 

same way as discussed in Eqs. (1) and (2). There is no reliable method for deciding the 

number of neural units required for a particular problem. This is decided based on experience 

and a few trials are required to determine the best configuration of the network. In this study, 

the multilayer feed-forward type of neural networks, as shown in Fig. (3), is considered. 
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Fig. (3) Architecture of Neural Network 
 

2.3. Back-propagation Algorithm 

 

Multi-layer perceptrons are trained with supervised learning rules. Hopefully, a 

network that produces the right output for a particular input will be obtained. The most widely 

used supervised learning algorithm for neural networks is the back propagation, also known 

as error back propagation. Training is implemented by adjusting the weights according to the 

error (the distance between the target and the actual output vector) in the output layer. The 

learning error for rth example is calculated by the following performance function usually 

called the mean-square error:  

 

2

j

jj
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)YT(
2
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E   ,                                                                                                     (3) 

 

Where Tj is the target output at neuron j and Yj is the output predicted at neuron j. As 

presented in Eqs. (1) and (2) the output Yj is a function of synaptic strength and outputs of the 

previous layer. In the back-propagation phase, the error between the network output and the 

desired output values is calculated using the so called generalized delta rule, and weights 

between neurons are updated from the output layer to the input layer. These operations are 

repeated for each example and for all the neurons until a satisfactory convergence is achieved 

Feed-forward 

Back-propagation 
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for all the examples present in the training set. The training process is successfully completed, 

when the iterative process has converged. The connection weights are captured from the 

trained network, in order to use them in the recall phase. There are several different back 

propagation training algorithms. They have a variety of different computation and storage 

requirements and no one algorithm is best suited to all locations. The resilient back 

propagation (RPROP) is an algorithm for feed forward networks that often provides faster 

convergence; therefore it is used in this study. 

 

3. ANN for Beam-columns: 
 

The computer program ―MATLAB version 7.0 Neural Network Toolbox‖ is employed for 

the proposed ANN model in this study. The advantage of using this program is that many 

types of networks are included in the program and many training algorithms with different 

properties can be used for a specific network model. An ANN model was developed to predict 

the ultimate strength of CCFST beam-columns under eccentric axial loads. 

 

3.1. Selection of Training and Testing Data 

 

The experimental data that are used to build the NN model are obtained from a database 

developed by Kim [12]. The data used to build the NN model should be divided into two 

subsets: training data and validating or testing data. The testing data contains approximately 

20% from total database. The training phase is needed to produce a NN that is both stable and 

convergent. Therefore, selection of what data to use for training a network is one of most 

important steps in building a NN model. The total number of (181) test beam-columns were 

utilized. The training data contained (147) samples and the testing data comprised of (34) 

samples which were selected randomly. ANNs interpolate data very well. Therefore, patterns 

chosen for training set must cover upper and lower boundaries [13].  

 

3.2. Input and Output Layer 
 

The nodes in the input layer and output layer are usually determined by the nature of the 

problem. In this study the parameters which may be introduced as the components of the input 

vector consist of yield stress of steel tube (fy), cylinder concrete compressive strength (f'c), 

outside diameter of circular steel tube (D), thickness of steel tube (t), laterally unbraced length 

of member (L), and eccentricity of applied load (e). The output vector is the ultimate axial 

load (P). Table (1) summarizes the ranges of each different variable. 
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Table (1) Range of input parameters  

 

Parameters Range 

Yield stress of steel tube (fy) (MPa) 185-435 

Cylinder concrete compressive strength (f'c) (MPa) 20-113 

Outside diameter of circular steel tube (D) (mm) 95-324 

Thickness of steel tube (t) (mm) 0.9-12.8 

Laterally unbraced length of member (L) (mm) 360-4968 

Eccentricity of applied load (e) (mm) 0.3-337 

 

3.3. Proposed ANN Model 

 

A multilayered feed-forward NN with a resilient back-propagation algorithm was 

employed in the present study. The NN architecture developed has six neurons in the input 

layer and one neurons in the output layer as demonstrated in Fig. (4). Two hidden layers were 

used in the architecture of multilayer feed-forward NN due to its minimum absolute 

percentage error values for training and testing sets. In the first hidden layer eight and in the 

second hidden layer two neurons were determined. The transfer (activation) functions used 

are hyperbolic tangent (tansig) function in first hidden layer and linear (purelin) function in 

both second hidden and output layer. 

 

 

 

 

 

 

 

 

 

 
Fig. (4) Architecture of proposed ANN 
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4. Results and Discussion 
 

An important aspect of developing ANNs is determining how well the network performs 

once training is complete. The performance of a trained network is checked by involving two 

main criteria: 

(1) How well the NN recalls the predicted response from data sets used to train the network 

(called the recall step). A well trained network should be able to produce an output that 

deviates very little from desired value. 

(2) How well the NN predicts responses from data sets that were not used in the training 

(called the generalization step). A well generalized network should be able to sensible the 

new input patterns. 

The performance of the proposed ANN is tested by the regression analysis between the 

output of this network (predicted values) P(ANN) and the corresponding targets 

(experimental values) P(exp) for both training and testing data as shown in Figs. (5) and (6), 

respectively. The coefficient of correlation (R
2
) is a measure of how well the variation in the 

output is explained by the targets. If this number is equal to 1, then there is a perfect 

correlation between targets and output. In these figures, the coefficient of correlation R
2
= 

0.984, 0.979 for training and testing data respectively. These values indicate an excellent 

agreement between the predicted values and the experimental values.  

 

                                                                                                                                                                                                                                         

 

 

 

 

 

 

 

 

 

 

 

 

Figure (5) Regression analysis between 

predicted and actual values for training data 

Figure (6) Regression analysis between 

predicted and actual values for testing data 
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Table (2) presents the actual and predicted values for testing data. As seen from this table, 

the values obtained are very close to the experimental results. The average value of ratios of 

actual to predicted ultimate loads is 1.028 with a standard deviation of 0.147. This result 

demonstrates that ANN can be successfully applied to establish accurate and reliable 

prediction models. 

 

Table (2) Actual (experimental) and predicted values for testing data 

 

Column 

designation 

fy   

(MPa) 

f'c   

(MPa) 

D  

 (mm) 

t   

(mm) 

L   

(mm) 

e 

(mm) 

P(exp) 

(kN) 

P(ANN) 

(kN) 
P(exp)/ P(ANN) 

#1 415 29 114.3 3.2 914.4 30 400 415.5 0.963 

#2 330 21 152.4 1.5 1016 111.3 135 117.7 1.147 

#3 290 35.2 127 2.4 1066.8 66 267 238.6 1.119 

M2 305 43.2 169.4 5.3 3327.4 38.1 689 684.8 1.006 

M8 270 33.2 140.2 9.6 3327.4 31.8 538 621.6 0.866 

C7 190 60.1 127 1.7 1714.5 6.4 836 601.9 1.389 

C11 190 42.6 127 1.6 2032 22.4 338 309.7 1.091 

#4 220 67.4 101.6 1.6 1313.2 10 350 346.9 1.009 

9 220 67.4 101.6 1.6 1818.6 10 280 242.0 1.157 

PB1-4 

 

315 41.1 166.1 5 665.5 40 1245 1242.7 1.002 

PB2-2 300 41.1 166.1 5 1496.1 20 1431 1364.0 1.049 

PB2-6 300 41.1 166.1 5 1496.1 100 568 565.2 1.005 

PC1-1 285 27.9 166.1 5 2989.6 20 1022 924.9 1.105 

8 275 20.3 95 12.8 1420 2.3 938 949.9 0.987 

13 275 20.3 95 12.7 861.1 2.3 886 884.2 1.002 

42 385 25 95 3.7 861.1 0.5 686 491.9 1.395 

49 335 25 95 3.5 1981.2 3.3 488 558.1 0.874 

69 390 22.9 215.9 6 2220 2.8 2462 2457.2 1.002 

74 335 24.1 95 3.4 1981.2 1.5 473 588.4 0.804 

84 330 21.1 120.9 3.7 1049 5.3 746 753.7 0.990 

89 345 21.1 120.9 5.6 1049 4.6 998 1088.7 0.917 

101 345 21.1 120.9 5.7 2311.4 3.6 786 850.2 0.924 

S2 240 71.1 250 2 2200 46 2002 2187.7 0.915 

SC-16 410 96 101.6 2.4 2175 50 157 108.5 1.447 

C4-5 355 31.9 165.4 4.1 660.4 103.3 555 533.3 1.041 

C8-3 355 31.9 165.4 4.1 1323.3 62.1 659 699.3 0.942 

C12-1 355 31.9 165.4 4.1 1983.7 20.7 948 925.7 1.024 

C18-3 355 31.9 165.4 4.1 2976.9 62.1 460 460.0 1.000 

C24-5 355 31.9 165.4 4.1 3967.5 103.3 277 304.7 0.909 

C30-1 355 31.9 165.4 4.1 4968.2 20.7 479 540.2 0.887 

L-1 340 36 119.9 2.6 1400 14 590 541.1 1.090 

S10E250A 210 41 190 0.9 662.9 7.4 1218 1132.7 1.075 

S30E180A 365 80.2 165.1 2.8 579.1 17.8 1652 1841.1 0.897 

S30E110B 365 112.7 165.1 2.8 579.1 15.5 1879 2004.8 0.937 

Average 1.028 

Standard Deviation 0.147 
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Based on these results, the proposed ANN architecture (6-8-2-1) with activation functions 

(tansig, purelin, purelin) with (RPROP) is used for this study. Table (3) shows the properties 

of this network. 

Table (3) Values of parameters used in the proposed ANN model  

Number of 

input layer 

neurons 

Number of 

hidden 

layer 

Number of 

first hidden 

layer neurons 

Number of 

second hidden 

layer neurons 

Number of 

output layer 

neuron 

Error 

after 

learning 

Learning 

cycle 

6 2 8 2 1 0.003 10000 

 

5. Comparison with Design Strengths 

The predicted strengths, of the CCFST beam-columns in Table (2), obtained from the 

proposed ANN model are compared with unfactored design strengths predicted using the 

design procedure specified in the American Institute of Steel Construction (AISC) [14] and 

the Eurocode4 [15] for CCFST beam-columns as calculated by Kim [12]. The predicted 

strengths of the proposed ANN model P(ANN) are compared with the design strengths 

calculated using AISC specifications P(AISC) and the design strengths calculated using 

Eurocode4 specifications P(Euro) as shown in Table (4). The values of P(exp)/P(ANN), 

P(exp)/P(AISC) and P(exp)/P(Euro) ratios with the corresponding averages and standard 

deviations are shown also in this table.  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Fig. (7) Regression analysis between predicted and actual values 
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It can be seen, from Table (4), that the average ratio of actual to predicted loads is 1.028 

for ANN, 1.168 for AISC, and 1.249 for Eurocode4, and that the standard deviation is 0.147 

for ANN, 0.236 for AISC, and 0.179 for Eurocode4. Therefore the design strengths calculated 

using AISC and Eurocode4 specifications are generally conservative. 

 

Table (4) Comparison between actual (experimental) and predicted values 

 

Column 

designation 

P(exp) 

(kN) 

P(ANN) 

(kN) 

P(AISC) 

(kN) 

P(Eurocode) 

(kN) 

P(exp)/ 

P(ANN) 

P(exp)/ 

P(AISC) 

P(exp)/ 

P(Euro) 

#1 400 415.5 377.4 373.8 0.963 1.06 1.07 

#2 135 117.7 163.9 107.9 1.147 0.83 1.26 

#3 267 238.6 249.5 185.4 1.119 1.07 1.44 

M2 689 684.8 801.2 632.1 1.006 0.86 1.09 

M8 538 621.6 656.1 543.4 0.866 0.82 0.99 

C7 836 601.9 601.4 572.6 1.389 1.39 1.46 

C11 338 309.7 344.9 262 1.091 0.98 1.29 

#4 350 346.9 402.3 350 1.009 0.87 1 

9 280 242.0 354.4 291.7 1.157 0.79 0.96 

PB1-4 

 
1245 1242.7 870.6 876.8 1.002 1.43 1.42 

PB2-2 1431 1364.0 1034 1052.2 1.049 1.38 1.36 

PB2-6 568 565.2 507.1 364.1 1.005 1.12 1.56 

PC1-1 1022 924.9 762.7 655.1 1.105 1.34 1.56 

8 938 949.9 788.2 794.9 0.987 1.19 1.18 

13 886 884.2 681.5 666.2 1.002 1.3 1.33 

42 686 491.9 508.1 519.7 1.395 1.35 1.32 

49 488 558.1 332 319 0.874 1.47 1.53 

69 2462 2457.2 2018 2034.7 1.002 1.22 1.21 

74 473 588.4 337.9 330.8 0.804 1.4 1.43 

84 746 753.7 548.5 565.2 0.990 1.36 1.32 

89 998 1088.7 761.8 779.7 0.917 1.31 1.28 

101 786 850.2 655 644.3 0.924 1.2 1.22 

S2 2002 2187.7 2152.7 1696.6 0.915 0.93 1.18 

SC-16 157 108.5 241.5 151 1.447 0.65 1.04 

C4-5 555 533.3 437 385.4 1.041 1.27 1.44 

C8-3 659 699.3 794 470.7 0.942 0.83 1.4 

C12-1 948 925.7 581.6 740.6 1.024 1.63 1.28 

C18-3 460 460.0 383.3 400 1.000 1.2 1.15 

C24-5 277 304.7 189.7 251.8 0.909 1.46 1.1 

C30-1 479 540.2 386.3 371.3 0.887 1.24 1.29 

L-1 590 541.1 464.6 460.9 1.090 1.27 1.28 

S10E250A 1218 1132.7 1015 1127.8 1.075 1.2 1.08 

S30E180A 1652 1841.1 1515.6 1588.5 0.897 1.09 1.04 

S30E110B 1879 2004.8 1579 2087.8 0.937 1.19 0.9 

Average 1.028 1.168 1.249 

Standard Deviation 0.147 0.236 0.179 
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In Fig. (7), the predicted strengths P(ANN) and the design strengths P(AISC) and 

P(Euro) are plotted against the experimental strengths. As shown in this figure, the coefficient 

of correlation R
2
 = 0.979, 0.923 and 0.944 for ANN, AISC, and Eurocode4, respectively. 

These values indicate that the proposed ANN model can predict more accurate results than 

AISC and Eurocode4 methods and that ANN provided an efficient alternative method in 

predicting the ultimate strength of CCFST beam-columns. 

 

6. Conclusions 

The most important conclusions that can be drawn from the present study are the 

followings: 

1. The ultimate strength of CCFST beam-columns can be predicted by the proposed 

ANN model in a quite short period of time with tiny error rates. 

2. The predicted ultimate strength values were very close to the experimental results. 

3. It was noticed that the design strengths calculated using AISC and Eurocode4 

specifications are generally conservative. 

4. The predicted strengths obtained from the proposed ANN model were compared with 

current design provision for CCFST beam-columns (AISC and Eurocode4). It was 

found that the proposed ANN model can predict more accurate results than AISC and 

Eurocode4 specifications. 

5. The above conclusions have demonstrated that ANN provided an efficient alternative 

method in predicting the ultimate strength of CCFST beam-columns. 
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Notation  

 

The following symbols are used in this paper: 

 

α  = constant;  

b = bias (used to model the threshold); 

D = outside diameter of circular steel tube (mm); 

E = mean-square error;  

e  = eccentricity of applied load (mm); 

f'c = cylinder concrete compressive strength (MPa); 

fy = yield stress of steel tube (MPa); 

L = laterally unbraced length of member (mm); 

(net)j = weighted sums of the input components;  

P = ultimate eccentric axial load; 

R
2
 = coefficient of correlation;  

Tj = target output at neuron j; 

t = thickness of steel tube (mm); 

Wij = weight between the jth neuron in the preceding layer; and 

Yi  = output predicted at neuron i.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 


