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Abstract 

The paper investigate the vibration of the rotating shafts and whirling were theoretically by 

dealing with only the shaft bending without torsion. It is shown that the shaft whirling result 

from vibration consider for this particular system will have critical whirling speed which 

increases as the inertia forces of the rotor. Whirling is associated with fast-rotating shafts. When 

a shaft rotates it is subjected to radial or centrifugal forces, which cause the shaft to deflect from 

its rest position. These centrifugal forces are unavoidable, since material inhomogeneities and 

assembly difficulties ensure that the center of gravity of the shaft or its attached masses cannot 

coincide with the axis of rotation. The centrifugal forces involved and determined that the only 

destabilizing or restoring force was that due to the elastic properties or stiffness of the shaft. 

Hence, to deduce the critical speed caused an infinite deflection of shaft due to whirling.  

Loading response analysis can simulate the response of the rotor using Ansys program, which 

can help to identify the main modal frequency. To a rotating shaft, the modal analysis can give 

a serial of Eigen frequency, but only some of them are just the right modal frequency value we 

need. The harmonic analysis can extract the eigenvector of the modal analysis result, integrate 

them together, and show the amplitude frequency response, deformation and stress distribution 

characteristics of some special place of the rotating shaft.   

                                      

Keywords   Rotating shafts, Whirling, Inhomogeneities structure, Critical speed 

 

                                                                                                الخلاصة
في هذا البحث تم دراسة اهتزازات وتشويش الاعمدة الدوارة المنحنية نظريا دون التطرق الى الاهتزازات اللالتوائية حيث   

لهذا النوع الخاص من الانظمة يمتلك سرع تشويش حرجة تزداد بزيادة قوى   ان التشويش في الاعمدة الناشى من الاهتزازات

يقترن بالاعمدة الدوارة السريعة حيث عندما تدور الاعمدة فانها تتعرض الى قوى القصور للاعمدة الدوارة. ان التشويش 

طاردة مركزية تسبب انحراف العمود بعيدا عن موقع الاستقرار الخاص به حيث ان هذه القوى الطاردة المركزية لايمكن 

طه به لعمود او مراكز ثقل الكتل المرتبتجنبها لان عدم التجانس في المادة وصعوبات التجميع تحيل دون تطابق مركز الثقل ل

مع محور الدوران.ان القوة الطاردة المركزية تضمن وتحدد بان قوى الاسترجاع والتوازن هي تلك الناتجة عن الخواص 

المرنة او الصلابة للعمود ولهذا السبب نستنتج بان السرعة الحرجة هي  التي تسبب انحراف غير محدد نتيجة التشويش.ان 

ويمكن المساعدة لتحديد  Ansys  الاستجابة القسرية يمكن الاستفادة منها في محاكاة الاستجابة باستخدام برنامج تحليل

الترددات النسقية الرئيسية.ان التحليل النسقي بالنسبة للاعمدة الدوارة يعطي سلسلة من النسوق نحتاج الى البعض منها للدراسة 

نس يستخلص النسوق المطلوبة وباستخدام النسوق والترددات سوية يمكن معرفة خواص في هذا المشروع .وان التحليل المتجا

                الاستجابة الترددية وتوزيع الاجهادات والتشوهات لمواقع معينة للعمود الدوار.

     

 الاعمدة الدوارة ، التشويش ، الهياكل الغير متجانسة ، السرع الحرجة    كلمات مرشدة
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Nomenclature 

1. Introduction  

In modern design of rotating machinery the ratio of power generated per pound of the rotating 

elements has rapidly increased .when designing the rotating machinery, the stability behavior 

and the resonance response can be obtained using the calculation of complex Eigen values .the 

analysis considers the effects of direct and cross-coupled coefficients of stiffness as well as 

damping in the bearing and seals. Many papers have discussed how to improve the threshold 

performance of rotating machinery, such as changing the seal design, increasing the shaft 

stiffness, or adopting more stable bearings. In general, any parameter change will affect the 

natural frequency and mode shape. Hence, a suitable choice of rotor stiffness and rotor mass 

distribution may effectively improve the stability of a rotor system [1].      

When a shaft rotates it may well go into transverse oscillations. If the haft is out of balance the 

resulting centrifugal force will induce the shaft to vibrate when the shaft rotates at a speed equal 

to natural frequency transverse oscillations this vibration becomes large and shows up as a 

whirling of the shaft it also occurs at multiples of the resonant speed. This can be very damaging 

to heavy rotary machines such as turbine generator sets and the system must be      

𝜔 excitation [rad/s] 

e eccentricity [mm] 

k stiffness [N/m] 

ζ Damping ratio [dimensionless] 

c Damping coefficient [N.s/m] 

m mass [kg] 

𝑋(𝜔) Amplitude in X-direction [mm] 

𝑌(𝜔) Amplitude in Y-direction [mm] 

𝐺𝑥(𝑖𝜔) spectrum in X-direction [N2/Hz] 

𝐺𝑦(𝑖𝜔) spectrum in Y-direction [N2/Hz]  

ϕ Phase angle [degree] 

aij deflections [mm] 

Wc Critical speeds [rad/s] 
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Fig. (1) Rotating shaft of power plant                             

carefully balanced to reduce this effect and designed to have a natural frequency different to 

the speed of rotation. Start or stopped such machinery, the critical speed must be avoided to 

prevent the damage to the bearing and turbine blades. Consider a weightless shaft [2].             

Vibration problem can occur at any time in the installation or operation of a motor. When they 

occur it is normally critical that one reacts quickly to solve the problem. If not solved quickly, 

could either expect long term damage to the motor or immediate failure, which would result in 

immediate loss of production .The loss of production is the most critical concern, to solve a 

vibration problem one must differentiate between cause and effect. For this to happen, one must 

first understand the root cause of the vibration. In other words: where does the force come from. 

Is the vibratory force the cause of the high levels of vibration or is there a resonance that 

amplifies the vibratory response.  Perhaps the support structure is just not stiff enough to 

minimize the displacement.  In this paper the various sources of electrical and mechanical forces 

will be explained [3].                                                    

Rotating shafts tends to bow out at a certain speed and whirl in a complicated manner. 

Whirling is defined as the rotation of the plane made by the bent shaft and the line of the 

center of the bearing. It occurs due to a number of factors, some of which may include (i) 

eccentricity, (ii) unbalanced mass, (iii) gyroscopic factors, (iv) fluid friction in bearing, 

viscous (hysteresis) damping .Dangerous whirling motions may flexural speeds, and a great 

deal of previous arises in a rotor-support system when approaching the critical studies has 

focused on this technical problem and on the strategy to face it. Flexible-damped supports 

have been widely analyzed, but such additional sources of dissipation remain active and 

absorb power also at the operating point [4].                                                                                 
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Previous analyses of the authors have developed the idea of suspending the journal boxes on 

elastic supports with suitable rubbing surfaces orthogonal to the shaft axis, in order to damp the 

critical whirling by dry friction, both for symmetric or asymmetric constraint 

configurations.                                                                                                                               

On the other hand, a relevant drawback of rotating machinery is the typical trend to instability 

in the supercritical range due to the shaft material hysteresis, which may be restrained however 

by other external dissipative sources. The hysteresis effect may be dealt with by introducing an 

equivalent coefficient of viscous damping, inversely proportional to the whirling frequency, 

and assuming that the hysteretic force is given by the product of this coefficient and the rotor 

centre velocity relative to a reference frame rotating rigidly with the shaft end section [5]                 

1.1 Dynamic Analysis of Rotor-Bearing System 

The dynamic characteristic for the rotor-bearing system with a rotating speed is totally different 

from the system without rotating. The main purpose of rotor dynamic analysis is to determine 

the natural frequencies, mode shapes, critical speeds and steady state response of the rotor-

bearing system. 

1.2 Rotor Unbalance 

Static unbalance - All unbalanced masses lie in a single plane. This type of unbalance can be 

detected without spinning the wheel.  

1.3 Dynamic unbalance 

The unbalance is distributed over multiple planes. Results in a force and a rocking moment 

the force can be detected as a static unbalance, but the rocking moment must be determined 

by spinning  

2. Theoretical technique 
 

This paper analyses a simple two degree of freedom model of a rotating machine as shown in 

Fig. (2) Two common types of machine are analyzed using such model, namely a rigid rotor on 

flexible supports, or effort rotor consisting of a rigid disk on a flexible haft. In both cases the 

machine is assumed to be symmetrical, so that the centre of mass of the rotor is mid-way 

between two identical supports .In this way out-of-balance force  supplied  at the centre of the 

rotor will only excite translational motion .Furthermore both the flexible supports and the shaft 

are assumed to have negligible mass.                                     
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Fig. (2)  Turbocharger with Axial Fan Stag 

2.1 Whirling of rotating shafts 

 
Fig. (3) Shows the modeled machines schematically, where the mass is concentrated in a disk 

located centrally on the shaft. Thus the two degrees of freedom are the translational 

displacement of the disk. Both a flexible shaft and spring supports are included, and since both 

components have negligible mass their stiffness may be combined using the formula for springs 

in series ultimately the supports will be considered very flexible to isolate the vibration, it which 

case the rotor will be essentially rigid. The shaft rotates with the angular speed ω.  

Many mechanical systems involve a heavy rotating disk, known as a rotor, attached to a flexible 

shaft mounted on bearings. Typical examples are electric motors, turbines, compressors, etc. If 

the rotor has some eccentricity, i.e., if the mass center of the disk dose not coincide with the 

geometric center, then the rotation produces a centrifugal force causing the shaft to bend . The 

rotation of the plane containing the bent shaft about the bearing axis is known as whirling. For 

certain rotational velocities, the system experiences violent vibration, and a phenomenon we 

propose to investigate.  

Fig. (4a) shows a shaft rotating with the constant angular velocity ω   relative to the inertial 

axes x and y, the shaft carries a disk of total mass m at midcap and is assumed to be mass less. 

Hence, the motion of the system can be described by the displacements x and y of the geometric 

center S of the disk. Although this implies a two-degree-of-freedom system, the x and y motions 

are independent, so that the solution can be carried out as if there were two systems with one 

degree of freedom each .As preliminary to the derivation of the equations of motion, we wish 

to calculate the acceleration of the mass center. To this end, we denote the origin of the inertial 
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system x and y by o and the center of mass of the disk by C.                                                 

 

Fig. (3) Schematic of rotor bearing  

Due to some imperfection of the rotor, the mass center C does not coincide with geometric 

center S. We denote the distance between S and C by e, as shown in Fig (4b), where e represents 

the eccentricity. To calculate the acceleration ac of the mass center C, we first write the radius 

vector rc from O to C in terms of rectangular components as: 

  𝑟𝑐 = (𝑥 + 𝑒 𝑐𝑜𝑠 𝜔𝑡)𝒊 + (𝑦 + 𝑒 𝑠𝑖𝑛𝜔𝑡)𝒋                                                                 (1) 

Where i and j are constant unit vectors along axes x and y, respectively then differentiating 

Equation (1) twice with respect to time, we obtain the acceleration of C in the form  

a𝑐 = (�̈� − 𝑒𝜔2 cos𝜔𝑡)𝒊 + (�̈� − 𝑒𝜔2 sin𝜔𝑡)𝒋                                                         (2) 
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Fig. (4) Whirling of rotor bearing  

To derive the equations of motion, we assume that the only forces acting on the disk are 

restoring forces due to the elasticity of the shaft and resisting forces due to viscous damping, 

such as caused by air friction.                                      

The elastic effects are represented by equivalent spring constants kx and ky associated with the 

deformation of the shaft in the x and y directions respectively. moreover , we assume that the 

coefficient of viscous damping is the same in both directions and equal to c. the elastically 

restoring forces and the viscous damping forces are acting at point s. considering Equation (1) 

the x and y component of  Newton's  second law , Equation ( 2 ) are 

  −𝑘𝑥𝑥 − 𝑐�̇� = 𝑚(�̈� − 𝑒ω2 cos𝜔𝑡)                                           (3) 

−𝑘𝑦𝑦 − 𝑐�̇� = 𝑚(�̈� − 𝑒𝜔2 sin𝜔𝑡) 

This can be rearranged in the form  

�̈� + 2휁𝑥𝜔𝑛�̇� + 𝜔𝑛𝑥
2 𝑥 = 𝑒𝜔2 cos𝜔𝑡 

�̈� + 2ζ𝑦ωnẏ + ωny
2 y = e𝜔2 sin𝜔𝑡                                              (4) 

Where 

ζ𝑥 =
c

2𝑚𝜔𝑛𝑥
 

𝜔𝑛𝑥 = √
𝑘𝑥
𝑚
                                                                                        (5) 

  

ζ𝑦 =
c

2mωny
 

𝜔𝑛𝑦 = √
𝑘𝑦

𝑚
                                                                                        (6)       
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are viscous damping factors and natural frequencies. 

 This should come as no surprise, as a rotating unbalanced mass. Hence, the steady-state 

solution of equation (4) can be obtained, following that pattern, we can write the solutions 

𝑥(𝑡) = |𝑋(𝜔)| 𝑐𝑜𝑠(𝜔𝑡 − 𝜙𝑥) 

(𝑡) = |𝑌(𝜔)| sin(𝜔𝑡 − 𝜙𝑦)                                                                       (7) 

Where the individual amplitudes are  

|𝑋(𝜔)| = 𝑒(
𝜔

𝜔𝑛𝑥
)2|𝐺𝑥(𝑖𝜔)| 

|𝑌(𝜔)| = 𝑒 (
𝜔

𝜔𝑛𝑦
)

2

|𝐺𝑦(𝑖𝜔)|                                                                       (8) 

in which  

|𝐺𝑥(𝑖𝜔)| =
1

{[1 − (ω ωnx⁄ )
2
]
2

+ (
2ζxω

ωnx⁄ )
2

}
1 2⁄

 

|𝐺𝑦(𝑖𝜔)| =
1

{[1 − (𝜔 𝜔𝑛𝑥)⁄ 2
]
2
+ (

2휁𝑥𝜔
𝜔𝑛𝑦

)
2

}

1 2⁄
                                         (9) 

 are magnitudes and 

𝜙𝑥 = tan−1
2휁𝑥𝜔 𝜔𝑛𝑥⁄

1 − (𝜔 𝜔𝑛𝑥)⁄ 2 

𝜙𝑦 = tan
−1

2휁𝑦𝜔 𝜔𝑛𝑦⁄

1 − (𝜔 𝜔𝑛𝑦)⁄ 2                                                                           (10)   

are the phase angles. 

We consider first the most common case , namely , that of a shaft of circular cross section, so 

that  the stiffness is the same in both directions ,𝑘𝑥 = 𝑘𝑦 = 𝑘. In this case, the two natural 

frequencies coincide and so do the viscous damping factors, or 

𝜔𝑛𝑥 = 𝜔𝑛𝑦 = 𝜔 = √
𝑘

𝑚
                                                                               (11) 

Moreover, in view of Equation (11), we conclude from Equation (9) and (10) that the 

magnitudes on the one hand and the phase angles on the other hand are the same ,or 

|𝐺𝑥(𝑖𝜔)| = |𝐺𝑦(𝑖𝜔)| = |𝐺(𝑖𝜔)| =
1

{[1 − (𝜔 𝜔𝑛)⁄ 2
]
2
+ (2휁𝜔𝑛 𝜔𝑛)⁄ 2

}
1 2⁄

 

𝜙𝑥 = 𝜙𝑦 = 𝜙 = tan−1
2휁𝜔 𝜔𝑛⁄

1 − (𝜔 𝜔𝑛)⁄ 2                                                         (13) 
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It follows immediately, from Equation (7), that the amplitudes of the motions x and y are 

equal to one another, or 

|𝑋(𝜔)| = |𝑌(𝜔)| = 𝑒(
𝜔

𝜔𝑛
)2|𝐺(𝑖𝜔)|                                                           (14) 

But, from Fig (2) and Equation (7) we can write  

tan 휃 =
𝑥

𝑦
= tan(𝜔𝑡 − 𝜙)                                                                           (15) 

From which we conclude that  

휃 = 𝜔𝑡 − 𝜙                                                                                                       (16)                                                                                    

and       휃̇ = 𝜔                                                                                                  (17)                                                                                           

Hence, in this case the shaft whirls with the same angular velocity as the rotation of the disk, 

so that the shaft and the disk rotate together as a rigid body, this case is known asynchronous 

whirl. It is easy to verify that in synchronous whirl the radial distance from O to S for a given 

𝜔 is constant,  

𝑟𝑜𝑠 = √𝑥2 + 𝑦2 = 𝑒 (
𝜔

𝜔𝑛
)
2

|𝐺(𝑖𝜔)| = constant                                       (18) 

So that point S describes a circle about point O. To determine the position of C relative to the 

whirling plane, we consider equation (16). The relation between the angles 휃,𝜔𝑡 𝑎𝑛𝑑 𝜙 is 

depicted in Fig. (4).Indeed, from Fig. (4), we can interpret the phase angle 𝜙 as the angle 

between the radius vectors 𝑟𝑜𝑠 and 𝑟𝑐𝑠 . Hence, recalling the second of Equation (13), we 

conclude that 𝜙 < 𝜋 2 ⁄ for 𝜔 < 𝜔𝑛, 𝜙 = 𝜋 2⁄   for 𝜔 = 𝜔𝑛 and  𝜙 > 𝜋 2⁄  for  𝜔 > 𝜔𝑛.  

As a final remark concerning synchronous whirl, we note from Equation (13) that the magnitude 

and the phase angle have the same expressions as in the case of the rotating unbalanced mass, 

which corroborates our earlier statements that the two systems are analogous. Next, we return 

to the case, 𝑐 = 0.In this case, solution (8) can be written as 

𝑥(𝑡) = 𝑋(𝜔)𝑐𝑜𝑠𝜔𝑡 

𝑦(𝑡) = 𝑌(𝜔)sin𝜔 𝑡                                                                                               (19)    

where       𝑋(𝜔) =
𝑒(𝜔 𝜔𝑛𝑥)⁄ 2

1 − (𝜔 𝜔𝑛𝑥)⁄ 2 

Y (𝜔) =
𝑒(𝜔 𝜔𝑛𝑦⁄ )

1 − (𝜔 𝜔𝑛𝑦)⁄
                                                                                         (20)  

Dividing the first of Equation (19) by X(𝜔)and the second by Y(𝜔), squaring and adding the 

results, we obtained  

𝑥2

𝑋2
+
𝑦2

𝑌2
= 1                                                                                                          (21) 
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Which represents the equation of an ellipse .Hence, as the shaft whirls, point S describes an 

ellipse with O as its geometric center. To gain more insight into the motion, we consider 

Equation (19) and write  

tan 휃 =
𝑦

𝑥
=
𝑌

𝑋
tan𝜔𝑡                                                                                          (22) 

Differentiating both sides of Equation (22).with respect to time and considering Equation 

(19), we obtain 

휃̇ =
𝑋𝑌

𝑋2 cos𝜔𝑡 + 𝑌2 sin𝜔𝑡
𝜔                                                                            (23)   

But the denominator on the right side of Equation (23) is always positive, so that the sign of 휃̇ 

depends on the sign of XY. By convection, the sign of 𝜔 is assumed as positive, i.e., the disk 

rotates in the counter-clockwise sense. We can distinguish the following cases: 

1. 𝜔 < 𝜔𝑛𝑥   and  𝜔 < 𝜔𝑛𝑦.In this case, we conclude from Equation (19) that XY> 0,so that 

point S moves on the ellipse in the same sense the rotation 𝜔 . 

2. 𝜔𝑛𝑥<𝜔 < 𝜔𝑛𝑦  𝑜𝑟  𝜔𝑛𝑦 < 𝜔 < 𝜔𝑛𝑥.In either of these two cases XY< 0, so that S moves in 

the opposite sense. 

3.𝜔 > 𝜔𝑛𝑥    and    𝜔 > 𝜔𝑛𝑦.In this case XY >0, so that S moves in the same sense  as ω 

Examining solution (18) and (19) for the undamped case, we conclude that the possibility of 

resonance exists. In fact, there are two frequencies for which resonance is possible, namely, 

𝜔 = 𝜔𝑛𝑥  and  𝜔 = 𝜔𝑛𝑦. of course, in the case of resonance, solutions (18) and (19) are no 

longer valid.  It easy to verify by  

Substitution that the particular solutions in the two cases of resonance are  

𝑥(𝑡) =
1

2
𝑒𝜔𝑛𝑥𝑡 sin𝜔𝑛𝑥𝑡 

𝑦(𝑡) =
1

2
𝑒𝜔𝑛𝑦𝑡 cosωny 𝑡                                                                                            (24) 

2.2 Whirling of shaft  
 

Whirling is defined as the rotation of the plane made by the bent shaft and the line of the 

centre of the bearing. It occurs due to a number of factors, some of which may include (i) 

eccentricity, (ii) unbalanced mass, (iii) gyroscopic forces, (iv) fluid friction in bearing, 

viscous damping.  

2.3 Critical speeds analysis 

The first critical speeds, the shaft will bend to the simplest shape possible. At the second 

critical speed it will be bend to the second simplest shape possible. 
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2.4 Dunkerly equation    

Where wc is the first critical speed of multi mass system. 

W1: is the critical speed which would exist if only mass no 1 where present. 

Higher critical speed: 

For multi mass system requires more exterior calculation than is necessary forth determine of 

the lowest .first critical speed. 

1

𝜔4
− (𝑎11𝑚1 + 𝑎22𝑚2)

1

𝜔2
+ (𝑎11 𝑎22 − 𝑎12𝑎21) 𝑚1𝑚2 = 0                                      (25) 

 

|

|
a11m1 −

1

ω2
a12m2 a13m3

a21m1 a22m2 −
1

ω2
a23m3

a21m1 a22m2 a33m3 −
1

ω2

|

|
= 0                                                              (26) 

3. Result and Discussion 

Vibrations in turning apparatus in light of the fact that numerous issues, for example, weakness 

of the pivoting parts, intemperate clamor, or transmission of vibration to the supporting 

structure. A noteworthy wellspring of this vibration is out-of-offset strengths and this paper 

recommends that the rotor reaction is lessened by suspending the machine on nonlinear springs. 

In the field of vibration disengagement, nonlinear mounts have been proposed which have the 

same static solidness as an identical straight backing, i.e. burden bearing ability, however in the 

meantime offer a low element solidness, i.e. a lower normal recurrence. Along these lines the 

isolator is powerful over an expanded recurrence range. These mounts are referred to in the 

writing as high-static-low-dynamic-firmness (HSLDS) systems. In this paper, the rotor is 

suspended on a solidifying HSLDS spring to extensively decrease the discriminating rates to 

values far from the working velocity. The upsides of the nonlinear backings are shown utilizing 

a straightforward two level of flexibility pivoting machine model comprising of an unbending 

circle, and shafts, course and backings that are adaptable however have insignificant mass. 

Taking after a direct examination to highlight the advantages of a low element firmness, an 

estimated diagnostic arrangement of the nonlinear mathematical statement of movement is 

exhibited. A correlation between the straight and nonlinear reaction demonstrates the viability 

of the nonlinear backings. At last, the issues that happen if the nonlinearity is excessively solid 

are highlighted. 
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3.1 Rotating Dynamic 

Since turning apparatus needs to pivot to do helpful work, we should consider what happens to 

the first method of our rotor once it is turning. Once more, we will have three distinct renditions 

with expanding bearing firmness, and we will expect our bolster orientation have approach 

solidness in every spiral heading. How about we rehash our investigation/modular test with the 

pole turning at 10 rpm, and take a gander at the recurrence and mode state of the most minimal 

normal recurrence and the frequencies and mode shapes for the least method of the three 

machines. Note that the state of the movement has changed. The frequencies, however, are near 

to the no turning first mode. As in the no turning case, the bearing firmness to shaft solidness 

proportion has an in number effect on the mode-shape. Once more, the case with no pole bowing 

is alluded to as an inflexible mode. These modes look all that much like the no revolution 

modes, yet they now include roundabout movement as opposed to planar movement. To picture 

how the rotor is moving, first envision swinging a hop rope around. The rope follows the 

diagram of a swelling barrel. Accordingly, this mode is once in a while alluded to as a "round 

and hollow" mode. Seen from the front, the rope gives off an impression of being bobbing here 

and there. Subsequently, this mode is likewise some of the time called a "bob" or "interpreter" 

mode. Dissimilar to most hop ropes, on the other hand, the rotor is additionally pivoting. The 

spinning movement of the rotor (the 'hop rope movement) can be in the same bearing as the 

pole's revolution or the other way. Rotor traverse the course of time for both synchronous 

forward and synchronous in reverse spin. Note that for forward spin, a point on the surface of 

the rotor moves in the same bearing as the spin. In this manner, for synchronous forward spin 

(unbalance excitation, for instance), a point at the outside of the rotor stays to the outside of the 

spin circle. In reverse spin, then again, a point at the surface of the rotor moves the other way 

as the spin to within the spin circle amid the spin. To perceive how a more extensive scope of 

shaft velocities changes the circumstance ،we could perform the examination/modular test with 

a scope of shaft paces from non-turning to rapid. We could then take after the forward and in 

reverse frequencies connected with the first mode. Figures 5 and 6 plots the Amplitude for 

Rotational and aggregate translational amid connected minute distinctive precise regular 

frequencies over a wide shaft rate range. we can see that the frequencies of this round and 

hollow mode don't change all that much over the velocity range. The retrogressive spin mode 

drops marginally, and the forward spin mode increments somewhat (most perceptibly in the 

high firmness case). The purpose behind this change will be investigated in the following 

segment. 
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Fig. (5) Rotational and total translational during applied moment 

 

Fig. (6) Normal stresses in the rotating shafts 

  



 

14 

 

Thi_Qar University Journal for Engineering Sciences, Vol.8, No. 2 2017 

3.2 Modal analysis 

Most importantly, modular investigation of this rotor is prepared. From the consequence of 

modular examination, modular recurrence and modular shape can be understood, which are 

helpful for the sensor dispersion configuration of attractive bearing. The outcomes are 

demonstrated in Figure 7 to 11. In this outcome, the gyroscopic impact has not been 

incorporated yet. In view of the low bearing solidness, there are two low interpreter basic 

frequencies. These two basic frequencies reflect just the relationship of the rotor's mass and the 

firmness. The other two twisting frequencies are a great deal more worried about. 

 

Fig. (7) Rotary shaft model 

 

 

 

Fig. (8) Rotary shaft meshing 
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Fig. (9) Forced Rotary shaft  

 

Fig. (10) Rotary shaft deformation 

 

 

Fig. (11) Rotary shaft stress distribution 
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4. Conclusion 

In this paper, we have talked about the dynamical conduct of an adaptable rotor framework 

taking into account hypothetical results and the numerical reenactment. It was watched that the 

chasing of the pivoting Speed is created by the spinning movement under mechanical 

reverberation and it can be seen subjectively of the spinning movement. At the point when the 

adaptable rotor framework like a flywheel is associated with a generator, the chasing potentially 

shows up in the electromotive power of the generator when the flywheel is under mechanical 

reverberation. The adjustment is accomplished by altering the damping power to the rotor. 

Nonetheless, for the flywheel vitality stockpiling framework, the strategy is disadvantageous 

as a result of the vitality misfortune. The use of the framework to Energy stockpiling has the 

extreme risk when the adaptability of the pole shows up. As a next step, we will add to a 

dynamic control of the spinning movement in the flywheel framework. The got results give us 

the pieces of information to accomplish the adjustment of the turning speed in the adaptable 

rotor framework. Bearing lodging elements on the reaction attributes of an adaptable rotor 

framework with an assistant freedom bearing . 

The dynamic configuration of rotor framework is to enhance the framework in strength at the 

working pace, unbalance reaction in the region of the rotor basic speeds, and minimize the 

framework weight considering financial matters. This paper manages the ideal shape 

configuration of the rotor shaft to change the discriminating speeds under the imperatives of 

the steady mass. As to the configuration techniques, the hereditary calculation was connected 

to locate the ideal distances across of a rotor shaft so that the enhanced rotor framework can 

yield the basic speeds as a long way from the working speed as could be expected under the 

circumstances. Hereditary calculation is a hunt calculation taking into account the normal 

world, which expresses that the person with the predominant character makes the prevalent 

relative due to having brilliant versatility, high survivability, and all the more intersection 

chance, and the regular hereditary that over and again perform the procedure of generation, 

hybrid, and transformation. The outcomes demonstrate that the basic paces of the rotor-bearing 

frameworks can be essentially enhanced by slight alteration of the pole distances across, even 

without expanding the aggregate mass of a rotor framework 
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