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Abstract

Predicting the shape function of a pre-tensioned spherica dome is very important for the
safety of a dome structures design and performance under cyclic loading. This paper presents
a new shape function mathematical model which is proposed for use with three dimensional
pre-tensioned spherical dome that should provide for a more accurate stresses. The new model
IS proposed based on an improved Airy stress function principle; to retain objectivity of the
results for three dimensional pre-tensioned spherical dome. This model is adopted in this
study for its simplicity and computational efficiency. The objective of this work is to analyze
the response and to describe the behavior of pre-tensioning dome structure under loading. The
model provides a very powerful tool for the solution of many problems in elasticity; such
applications include tensor analysis of the stresses and strains. Correlation between the
proposed model with experimental studies results of pre-tensioned specimens are conducted
and show a reasonable agreement. The results are drawn as to the applicability of this
approach. Stresses within dome surface are constant and the shear stress is zero when
subjected to a hoop stress. The maximum stress occurs at the boundary of the dome
intersecting the y-axis and is decreased aong the boundary of the disc as it nears the x-
axis. The maximum compressive stress occurs at the boundary intersecting with the x-axis

and decreases as it nears the z-axis along the interfacing boundary.

Keywords :Airy stress function ,Pre-stressing , Pre-tensioning, Finite-element method,

Nonlinear analysis, Slip
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1. Introduction

Roth and Whitely [1] propose a technology based on tensegrity for tough, rigid, large
scale domes that are also economical to construct. The development of a structural technology
to economically cover large areas would be useful for warehouses, permanent or temporary
protection for archaeologica and other vulnerable sites, large-scae electrical or
electromagnetic shielding and exclusion or containment of flying animals or other objects.
Structures based on such a technology can serve as frameworks in which environmental
control, energy transformation and food production facilities could be embedded. The space
application is also possible by using self-deployed structures. Summary advantages are
improved rigidity, ethereal, resilient, equal-length struts, simplejoints.

Figure(1). A representation of adome which utilitizes tensegrity solutions

technology [2].
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Predicting the shape function of a pre-tensioned spherical dome is very important for the
safety of a dome structures design. In addition, there are growing concerns about the
performance dome under loading. Hence, a more realistic evaluation of the dome structure
behavior due to cyclic loading is necessary to maintain containment integrity.

Elasticity is an elegant and fascinating subject that deals with the determination of the
stress, strain and distribution in an elastic solid under the influence of external forces. A
particular form of easticity which applies to a large range of engineering materias, at
least over part of their load range produces deformations which are proportiona to the
loads producing them, giving rise to the Hooke’s Law. The theory establishes mathematical
models of a deformation problem, and this requires mathematica knowledge to
understand the formulation and solution procedures. The variable theory provides a very
powerful tool for the solution of many problems in elasticity. Employing complex
variable methods enables many problems to be solved that would be intractable by other
schemes. The method is based on the reduction of the elasticity boundary value problem to
a formulation in the complex domain. This formulation then allows many powerful
mathematical techniques available from the complex variable theory to be applied to the
elasticity problem [3].

Material properties must be determined experimentally. Careful examinations of the
properties of most structural materials indicate that they are not isotropic or homogeneous.
Nonetheless, it is common practice to use the isotropic approximation for most anayses. In
the future of structural engineering, however, the use of composite, anisotropic materials will
increase significantly. The responsibility of the engineer is to evaluate the errors associated
with these approximations by conducting severa anayses using different material
properties [4].

In the recent years, thin shell structures find wide applications in many branches of
technology such as space vehicle, nuclear reactor, pressure vessdls, roofs of industria
building and auditoriums. From the point of view of architecture, the development of shell
structure offers unexpected possibilities and opportunities for the combined realization of
functional, economic and aesthetic aspects studied and tested conical concrete-shell
specimens with widely varying material properties and traced their load deformation
response, internal stresses and crack propagation through the eastic, inelastic, and ultimate
stressranges [5].

The finding of a structural evaluation of the 5 meter diameter observatory dome structure

constructed by Observa-Dome laboratories, Inc. Regarding to the presentation of literature

31



Thi_Qar University Journal for Engineering Sciences, Vol. 2, No. 4 2011

review, it should be emphasized that no investigation related to the analysis of large concrete
thin shell dome is found. So it can be represented this work as a first one in the field of the
study of concrete dome. The main objectives of this study are conducting an analytical study
on the behavior of reinforced concrete ribbed dome with precast rib and cast-inplace cover
and concrete slab under monotonically increasing loads by using three dimensiona finite

element method of analysis[6].

2. Theairy stressfunction

A stress function is afunction from which the stress can be derived at any given point X, y.
These stresses then automatically satisfy the equilibrium conditions.

Now let’s examine such a stress function. The Airy stress function ¢ is defined by [7]

_ %9 _ ¢ . _ %9
Ox =53, Oy = and Ty = _6x6y (1)
One can insert these stresses in the equilibrium conditions (1.1). One then directly see that
they are satisfied for every how convenient... However, if one inserts the above definitions
into the compatibility condition, we get

', 0% . 0%

ax* ax2 ay? N oyt 0 or *¢=0 2)

This equation is called the biharmonic equation. It needs to be satisfied by every valid Airy

stress function as well.

3. Pretensioned structures

Pre-tensioned high strength trusses using aloy steel bar are widely used as glass wall
supporting systems because of the high degree of transparency. The breakage of glass panes
in this type of system occurs occasionaly, likely to be due to error in design and analysisin
addition to other factors like glass impurity and stress concentration around opening in a
spider system. Most design does not consider the flexibility of supports from finite stiffness of
supporting steel or reinforced concrete beams [8]. The resistance of latera wind pressure of
the system makes use of high tension force coupled with the large deflection effect, both of
which are affected by many parameters not generally considered in conventional structures. In
the design, one must therefore give a careful consideration on various effects, such as support
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settlement due to live loads and material creep, temperature change, pre-tension force, and
wind pressure. It is not uncommon to see many similar glass wall systems fail in the wind
load test chambers under a design wind speed. This paper presents a rigorous analysis and
design of this type of structural systems used in a project in Hong Kong, China. The stability
function with initial curvature is used in place of the cubic function, which is only accurate
for linear analysis. The considerations and analysis techniques are believed to be of value to

engineersinvolved in the design of the structura systems behaving nonlinearly [9].

4. Shape function of three dimensional pre-tensioned spherical dome:
A model

In this paper, a prediction of the stresses of the dome structure model is made through
various types of numerical modeling, taking in account the appropriate non-linearity for each
material. For the nonlinear finite element analysis, the dome is idealized as an axisymmetric
model and a three dimensional global model. In order to simulate the actual behavior of the
dome, both numerical models are refined by comparison of the results of the two analyses and
with the existing research results. Furthermore, more recently developed material models for
dome are introduced to the model.

The shape function for three-dimensional pre-tensioned spherical dome logically provides a
reasonable stresses estimate. These shape functions are based on an n-order in genera
approximation, which provides for a non-linear interpolation. For three-dimensional
simulation this function offers advantages over the linear shape function currently used in
two-dimensional simulations [9]

O(X,Y,2) = Ay + Axy + Agy? + Ay X3 + Ay xPy + APxy? + Agy® + Ag x* + Ag X3Py

+ Agx?y? + Ao Xy +Aqp Y+ A 24 Apgxyz + Agy xz% +

+ Ajx"y"z"? €))
Ao, A1, Az, Az, Ay, As, Ag, A7, Ag, Ag,... Aj Constants determined from the boundary
conditions
Which is satisfy Airy Stress Function (Compatibility condition) equations (1, 2)
5. Tensor analysis

Tensors are geometric objects that describe linear relations between vectors, scalars, and
other tensors. Elementary examples include the dot product, the cross product, and linear

maps. Vectors and scalars themselves are also tensors. A tensor can be represented as a multi-
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dimensional array of numerical values. The order (also degree or rank) of a tensor is the
dimensionality of the array needed to represent it, or equivaently, the number of indices
needed to label a component of that array. For example, a linear map can be represented by a
matrix, a 2-dimensiona array, and therefore is a 2nd-order tensor. A vector can be represented
as a 1-dimensional array and is a 1st-order tensor. Scalars are single numbers and are zeroth-
order tensors.

= Vector differential operator (Del or Nabla)

Gradientg=Gradgo= ¢

Divergence ¢ =Div ¢= . @
Curl @ =Rotation ¢ =Rot @ = X¢

Compatibility of strain tensor

.Ejj = .Sjj — e — ASjj =0 (4)

and

1+v v .
——0j —ESI; | =unity ;=

1—2v5
E

E

(5)

&j =
Where e=trace of strain, S=trace of stress, "=gradient transpose
Trace of stress
S=0x+0y+0,
Traceof strain
e=¢€ +e ¢
0;j= Stress tensor
&;; =Strain tensor

1+v v
.Sjj:T .O'ij—E S (6)
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L 1-2v S -
e=—: @
1+v
Asjj = TAGH (8)
1+v v o
. 1-=2v n 11
e=—: (11)
1
S+ T S—fg -~ 'S+1TVVAS.I:0 (12)
1 , v
Jik,jk+o}k.ik_Acij _1+V S+mAS! = 0 (13)
From Beltrami
1

AS+—— . f = 14

S+q= fi=0 (14)
fi=body forces

External forces
Tij = 0ijn;
Tensoria relation

1+v Y

€jj = To'jj — Eél]s (15)
Ojj = )\6”9 + 2G8jj (16)

dj;=Kroniker delta (unit tensor)
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1 0 0
I I
I=unity ; I=|0 1 0|
0 0 1

5. = {O for i#]
L | otherwise
Modulus of rigidity

E
2(1+v)

E=Young’s modulus
v=Passion’s ratio
Lame’s coefficients

A= Ev
T (@A+v(@-2v)

1
WJZE(WJ+UH)

yij =Strain tensor

u;; = Displacements gradient for Cartesian coordinate

ou ov ow

yxxzex:&ayyyzey:a_y:yzzzez—a

1 0u ov
Yy =35 a—y+g
Yyz
1 0v Jw
2%z "oy
1 0w du
Y =308k Yoz

x,y,z=1,2,3
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u,v,w=1,2,3

Q;; = Rotational strain tensor

1
Q= 5 (uij = uj) (23)
Q. — 1(61,1 ov 24

X729y oz (24)
QY
_ 1 ( du Jdw 25
29z ox (25)
Q = 1(6v ou 26
27 2'%9x oy (26)

6. Result and discussion

The stresses of a spherical dome have then been analyzed using shape function. The
outputs are calculated and plotted against the added loading. Dynamic analysis of three-
dimensional dome structura is a direct extension of static analysis. The éastic stiffness
matrices are the same for both dynamic and static analysis. It is only necessary to lump the
mass of the structure at the joints. The addition of inertia forces and energy dissipation forces
will satisfy dynamic equilibrium. The dynamic solution for steady state harmonic loading,

without damping, involves the same numerical effort as a static solution.

The performance of this new formulation has been tested through a variety of linear and
nonlinear mechanical problems. In all of these tests, the new shape function showed better
performance than the previous formulation. In particular, the improvement is significant in the
three-dimensional dome structural test. Figure(2-4) shows the geometry, loading ,boundary
conditions ,orientation and coordinates system for this problem.

The radius is R=20m, the thickness t=0.7m, Young’s modulus E=8.3x10° and Poisson’s
ratio v= 0.4. Due to symmetry the three dimensional pre-tensioned spherical dome is meshed
using a single element through the thickness and with three unit loads along directions Ox, Oy

and Oz The element is the standard, multi-node, full integration solid element. The results are
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reported in Table 1 in terms of the normalized displacement at the load point and then the
output used to simulate the model in the Nastran Program.

Table (1). Shape Functionsfor a Nine-Node 20 Element .

Normalized Displacement
Optional Nodes Shape Function
P(x,y,2)

u v w
3 ay 1 1 -1
4 xy? -1 1 0
5 xy? 0 -1 -1
6 y* 1 0 1
7 xy? 0 1 0
8 Xyz - 0 -1
9 Xz 0 0 0

Figure(2). Dome.
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Figure(3). Spherical dome orientation.

0%, y,2)

Figure (4). Spherical Coordinate Systems.
The solution of shape function is obtained with multi e ement; the nonlinear response to the

initial radius is accurately recovered with (nxn) mesh of elements for a hemispherical dome.
The model output used in the Nastran Program to build the dome structure, to ssmulate the
dome stresses and deformation, and to draw stresses within total translation, within total

rotation and maximum shear stresses, which isindicated in Figure (5-10)
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Figure(5). Output MSC NASTRAN Dome Building.
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Figure(6). Output MSC NASTRAN Dome stresses and defor mation.



Thi_Qar University Journal for Engineering Sciences, Vol. 2, No. 4

2011

206 28 246 26w 287

o o

Figure(7). Stresses within total trandlation.

Figure(8). Stresses within total rotation.
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Figure(9). Stressesin the x-direction.

e | i I
1% 4 [ .- iR |

'
R ]
1 WA TR G 1. Pl Bl Mgy oy

Figure(10). Max shear stresses.
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7. Conclusion

This study demonstrated how to solve an elasticity problem using the proposed
shape stress function. It showed how the method can be applied to find the stresses
and displacements at any point on a 3-dimensional dome subjected to different boundary
conditions. This led to how this stress function can be applied to any phase dome in finding
the stresses and displacements at any point.

The aims of this paper is to enhance understanding of shape function of dome structures
from theoretica point of view and to provide insights into the problems associated with
computational modeling of their structural form and behaviour. The most commonly used
computational approach is described, together With abrief evaluation of the method
1-Output stress resultants, shear forces and moments for dome structure elementsis a required
anaysis output for any plate and shell type structure.

2- Displacements could be specified in a spherical coordinate system. This simplified the
enforcement of boundary conditions on axisymmetric models.

3- Demonstrated how the stress function is applied to the spherical dome. On studying the
graphical representation of the result, it can be seen that al stresses within dome surface are
constant and the shear stress is zero when subjected to a hoop stress. The maximum
stress occurs at the boundary of the dome intersecting the y-axis and is decreased aong the
boundary of the disc as it nears the x-axis. The maximum compressive stress occurs at
the boundary intersecting with the x-axis and decreases as it nears the z-axis along the
interfacing boundary.

4- The stresses in the spherica dome are three dimensional at the top of the spherical dome;
the value of the circumferentia strain is equal to that of the radia strain because the stretching
isuniform in al directions at the apex. Furthermore, the circumferential strain is fixed at zero

at the edge of the spherical dome, due to the clamping condition at the boundary.
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9. Nomenclature

o(x,y,2) Shape function, [dimensionless]

Ox Stressin x-direction, [N/m?]

oy Stress in y-direction, [N/m?]

Tay Shear stressin xy direction, [N/m?]

Tjj External forces, [N]

0ij Stress tensor, [N/m?]

& Strain tensor, [N/m?]

0jj Kroniker delta (unit tensor), [dimensionless]
E Young’s modulus, [N/m?]

Y Passion’s ratio, [dimensionless]

A Lame’s coefficients, [dimensionless]

Yij Shear Strain tensor, [dimensionless)

Uj Displacements gradient for Cartesian coordinate, [mm]
Qij Rotational strain tensor, [dimensionless]

Vector differential operator (Del or Nabla), [dimensionless]



