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Abstract 
  

The objective of this work is to study the dynamic behavior of FG pipe conveying fluid lying on the visco-elastic 

foundation using differential quadrature method. The material properties change constantly across the pipes thickness and 

depend on power law distribution. The vibration equations for FG pipe are obtained by using Hamilton's principle based 

on the Euler- Bernoulli model with (Clamped-Free) boundary conditions. An efficient numerical method by differential 

quadrature (GDQ) is developed to find the natural frequencies and stability for FG pipe. The effects gradient index and 

foundation parameters in fluid conveying FG pipes with certain flow velocity on frequencies are investigated. The 

present method of solution is accurately checked by comparing their results for fluid conveying pipe with the available 

results in the literature. From the comparison, a reasonable agreement was found. An increase in the gradient index 

results in an increase in the critical velocities for FG pipe. 
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1- Introduction 

 

The dynamic behavior of piping convey fluid have been 

widely range of applied due to its extensive in different 

application such as industries, petroleum, chemical, 

aerospace, people’s daily life, gasoline transportation 

systems, biological engineering systems, microfluidic, 

heat exchanger and Nano-fluidic devices [1]. The behavior 

of dynamic for pipes convey fluid had been studied by 

many researchers such as  Chellapilla, K. R and Simha, H. 

S (2008) [2] investigated the vibrations behavior of fluid 

conveying pipes lying on the two-parameter foundation 

with different boundary conditions. They obtained that the 

Pasternak parameter of foundation tends to increase the 

fundamental frequency and the critical flow velocity also 

increase for the same Winkler constant.  Tornabene F.  

et.al. (2010) [3] studied the stability of a cantilever fluid 

conveying pipe by using the (GDQ) method.  They found 

that at a given value of the mass ratio, only one critical 

flow speed can exist for the system. Also, the results of 

this paper showed that this method can be conveniently 

used to perform parametric studies of the stability of 

various pipes conveying fluid. Lu, P, & Sheng, H (2012) 

[4] established exact Eigen equations for the problems of 

(clamped-clamped) and (simply supported) of pipe 

conveying fluid. The dynamic stability properties of the 

fluid structure coupled systems with and without 

considering the elastic foundation effect are discussed.  A 

new analytical model for the dynamic behavior of a pipe 

conveying laminar flow with general boundary conditions 

was derived by Al-Hilli, A. H (2013) [5]. They found that 

the increase of the linear and rotational impedance leads to 

an increase in natural frequencies. Also when flow 

velocity equal zero or critical value, there is no difference 

in the frequency parameter for any value of the mass ratio.  

Mustafa, N. H (2014) [6] studied the dynamic stability for 

fluid-conveying pipe lying on the visco-elastic foundation 

with simply supported pipeline using the finite element 

method. The results showed that the increase in shear 

stiffness parameter leads to raising the value of the critical 

velocity of the fluid, while the increase in the damping 

parameter of foundation decreases it.  A free vibration of 

the beam carrying fluid with axial motion and multiple 

supports was discussed by Kesimli A, et.al. (2016) [7]. 

Hamilton's principle was used to find the equations of 

motion and multiple time-scaled methods were used in the 

solution of vibration equation. According to these results, 

an increase in beam coefficient for all locations of support 

also increases the values of natural frequency. On the 

other hand, when the velocity of fluid increases, natural 

frequencies tend to decrease. Zare A, et.al (2017) [8] 

investigated the dynamic attitude of fluid-conveying pipes 

using Isogeometric analysis (IGA). The vibration equation 

was derived based on the Bernoulli- Euler theory and the 

virtual displacements were used in the analysis. Also, the 

rotary inertia terms were included in their derivation. The 

results showed that the Isogeometric approach gives the 

critical velocity of fluid high precision value for different 

conditions.   Yun-dong, L, and Yi-ren, Y (2017) [9] 

studied the vibration analysis for fluid conveying pipe 

with elastic end conditions using the variation iteration 

method (VIM). They found the natural frequency, critical 

flow velocity and mode shape for different end conditions. 

Also, they demonstrated that VIM is efficient and high 
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precision and the VIM can be also used for analysis of 

another gyroscope system.  The dynamic behavior and 

stability for micro scale pipes conveying fluid with 

pinned-free boundary conditions were studied by Hu, K 

(2017) [10] using the differential quadrature (DQ) method. 

They were found the pinned-free flexible micro pipe was 

stable at low flow velocities. At high sufficiently flow 

velocities, the system becomes subject to flutter instability.   

With the development of materials science and 

technology, a new type of composite materials, i.e. 

functionally gradient (FG) material, which has many 

excellent properties, has been made [11, 12], the 

mechanical behavior of FGM has been studied by 

researchers in past decades. Piovan, M. T and Sampaio, R 

(2008) [13] addressed the problem of vibrations for axial 

moving flexible beam made of FGMs and solved using the 

finite element method. The results showed that when the 

main beam component is ceramics there is high oscillatory 

deployment, but when the main beam component is 

metallic, the frequency of oscillation is lower. They show 

that this type of beam model is quite useful for the analysis 

of deploying beam, for both functionally graded and 

isotropic materials.  Sina, S. A, et.al (2009) [14] developed 

the new theory of beam different from the traditional shear 

deformation theory for analyzed free vibration of function 

graded beam. They were found that the new beam theory 

is a little different in natural frequency from the first-order 

shear deformation theory. Alshorbagy, A, et.al (2011) [15] 

investigated the dynamic characteristics of the FGM beam 

using FEM. The virtual work principle with Bernoulli -

Euler theory was used to drive the vibration equation. 

They found that the slenderness ratio has no effected on 

the vibration frequencies or mode shapes.  Kim, Y. W 

(2005) [16] studied the effect of the temperature-

dependent vibration characteristics of the FG rectangular 

plates. Rayleigh-Ritz procedure and 3rd SDT of plate were 

used to find the motion's equation. Numerical results 

confirmed that the characteristics of the vibration were 

significantly influenced by the plate geometry, 

composition of materials, and high temperature.  The 

nonlinear free vibration of (FGM) Nano beams resting on 

the elastic foundation was studied by Vosoughi, A. R 

(2016) [17], DQM was applied to discretize the nonlinear 

vibration equation.  The effect of the small scale 

parameter, boundary conditions, Length-to-height ratio 

and the foundation parameters on the nonlinear free 

vibration response of the FG Nano beams was 

investigated. Ebrahimi, F and Barati, M. R (2018) [18] 

investigated free vibration of FG Nano beams rested on 

viscoelastic foundation and subjected hydrothermal 

loading. They found that the viscoelastic foundation for 

(Clamped-Clamped) boundary condition has a larger 

critical damping coefficient as compared with (Clamped-

pinned) and the later has larger critical damping 

coefficient than (pinned-pinned) FG Nano beam. Also, 

they obtained that the real and imaginary value of Eigen 

frequencies was reduced by increasing gradient index.  

Wang, Z. M and Liu, Y. Z (2016) [19] used the symplectic 

method to investigate the transverse vibration of FG pipe 

conveying fluid with clamped at both ends and Hamilton's 

principle was used to obtain the motion's equation. The 

effect of the gradient index on the critical flow velocity 

and complex frequency of FGM pipe conveying fluid was 

discussed.  Deng, J. et.al (2017) [20] investigated the 

dynamic behaviors of a viscoelastic FG pipe conveying 

fluid with multi-span using the dynamic stiffness method. 

From the result, the influence of volume fraction exponent 

on the dynamic behaviors is clear when it is less than 10. 

Also, the results showed that the internal damping 

coefficient of the simply-supported FGM pipe had no 

effect on critical velocities.  Tang, Y, and Yang, (2018) 

[21] studied the post-buckling and nonlinear vibration of a 

fluid-conveying FG pipe made. They found that the 

nonlinear frequency was increased with increased of the 

initial amplitude, but decreased as the flow velocity. In 

addition, both the critical flow velocity and the non-linear 

vibration frequency of the FGM pipe are rapidly 

decreasing with an increase in the gradient index of the 

material. 

In this paper, the equation of motion is first examined for a 

pipe conveying fluid resting on viscoelastic and 

constructed with FGM using Euler- Bernoulli beam theory 

and Hamilton’s principle. Then, use a differential 

quadrature method; it is converted to solve eigen-problem 

(natural frequency). Also, performed the transverse 

dynamic characteristics and stability of a clamped–Free 

FG pipe conveying fluid for different flow velocity the 

power law 

 

2- Mathematical formulation  

 

      Fig. 1 displays a schematic diagram for FGM pipe 

conveying fluid resting on a viscoelastic foundation. L is 

the length, h is thickness of pipe, (u) is the flow velocity, 

p
A and 

f
A  respectively is the cross-sectional area of the 

FG pipe and the fluid, 
o

R and
i

R  is the outer and inner 

radius of the pipe. Symbols u and w  represent the pipe 

displacement in the x and z directions, respectively.  In 

derivation of this model, the pipe is assumed to obey 

Euler–Bernoulli Beam theory. The structure of the pipe 

has small deformation, the conveyed fluid is non-viscous 

and incompressible, the effects of gravity and internal 

damping are ignored and the power-law material property 

was considered as continuously varying across wall 

thickness direction of the pipe. 
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c) 

Fig. 1: (a) Side view of FGM pipe conveying fluid, (b) cross-section and coordinate system (n – s), and (c) Geometry of 

FGM pipe and visco-elastic foundation. 

 

 

The dimensions and properties used in numerical results 

for FG pipe are taken as follows [21]. Aluminum and 

zirconium were selected respectively as metal materials 

(external) and ceramic (internal) of the FGM pipe. Their 

materials properties are given in Table-1. In this research 

Poisson's ratio ( v ) is considered to be a constant and the 

value is 3.0=v  

 

Table-1: Material properties of the constituents of FGM 

pipe 

 

materials  (kg/m3) E (GPa) Radius (m) 

Metallic (Outer) 2700 70 0.1 

Ceramic (Inner) 3000 151 0.08 

 

The effective function )( nF of material properties are 

given by [22]:  
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Where (n) is a normal coordinate across the wall thickness 

(−h/2 ≤ n ≤h/2). The effective modulus of elasticity 

)( nE and the effective density )( n for power law 

exponent are: 
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(Fig.2) shows the variation of volume fraction 
i

V  along 

pipe thickness for different gradient index according to the 

relation in Eqs (1). It shows that when exponent (k = 0), a 
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homogeneous pipe becomes; Also, the exponent k strongly 

affects the material properties of the FGM pipe. 

 

 

 

 

Fig. 2: Volume fraction variations along the thickness of pipe for different values of power gradient index (k).  

 

 

To derive the equation of motion, the energy principle and 

the variation approach will be used. To this end, the 

kinetic energy for internal fluid flow 
f

T  is written as 

follows [23]: 
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Where 
f

m  is represented the mass density for fluid 
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The kinetic energy's for the FG pipe can be expressions as 

[23]: 
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where 
p

m   is represented the effective mass of pipe, the 

effective of pipe mass can be written as 
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The total kinetic energy is defined as 
fP

TTT += and its 

variation T is obtained as: 
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Assuming that the pipeline is elastic, the stress – strain 

relation is given by: 
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u is written as 

follows: 
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According to small deformation assumption, the axial 

strain is written as: 
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Then, the expression of strain energy for FG pipe is 

obtained as: 
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Now, substituting Eqs (11) and (13) in Eqs (15), and 

perform some manipulation, the bending strain energy is 

expressed in terms of pipe deflection as follows: 
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where α is the flexural stiffness for FGM pipes, i.e. 
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the flexure stiffness of FG pipe is written as: 
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The variation of 
s

U  is written as: 
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The virtual work 
ext

W done by the external transverse 

forces 
ext

F  exerted on the FG pipe by the viscoelastic 

foundation can be calculated as: 
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2-1 Hamilton principle  

     The general form of Hamilton’s principle for pipes 

conveying flow was given by Benjamin [24], the dynamic 

version of a virtual displacements principles or Hamilton’s 

principle is: 
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Substituting Eqs (10), (20) and (21) into Eqs (22), 

integrating by parts and presenting the coefficients of w  

zero, lead to the vibration equations as: 
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(23) 

Clamped–free (C–F) is used to show the effects of end 

stiffness on the vibrational characteristics of FG pipe 

conveying fluid lying on viscoelastic foundation.  

Clamped-Free: 
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For convenience, these equations can be written 

dimensionless by using the following definition:   
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(25) 

Substituting the dimensionless parameters Eqs (25) into 

Eqs (23), the linear dimensionless form of the vibration 

equation is acquired: 
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The C–F dimensionless forms are readily studied as: 
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2-2 Differential quadrature method 

 

         The DQM is a numerical method, and it requires less 

grid points and then less computer time and storage to 

obtain acceptable accuracy. Successful applications of the 

DQM in many engineering problems have been 

demonstrated by numerous researches [25, 26]. The key 

procedure in the application of DQ lies in a determination 

of the weighting coefficients [25], so that its first 

derivative ( )xf
x

)1(
  at any grid point over [a, b] can be 

found by the following approximation: 

 

( ) ( ) NixfCf
j

N

j

ijx
,....2,1,,,,

1

)1()1(
= 

=

  (28) 

 

where the coefficient matrix 
)1(

ij
C can be specified in 

various fashions )(
)1(

xf


finds the first order derivative of 

)( xf with respect to x at
i

x  presented by Bellman et al 

(1972) [27]. For generality, GDQ chooses the base 

polynomials (or test functions) )(
k

g to be the Lagrange 

interpolating polynomial: 

 

dtWUT

t

t

ext

s
)(

2

1

 +−
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)()(

)(
)(

)1(

kk

k

M

M
g






−
=  (29) 

 

Where 

 

( ) ( )
==

−=−=

N

kii

jk

N

i

j
MM

,1

)1(

1

)(,,)(   (30) 

 

With these assumptions, Eqs (29) converts to: 

 

)(

),(
)(

)1(

k

k

k

M

N
g




 =  (31) 

 

 

The First order derivatives of the smooth function may be 

written as: 

)(

),(

)1(

)1(

)1(

j

ji

ij

M

N
C




=  (32) 

 

Substituting this expression in Eq. (32), we get 

 














=


−

=

ji
M

M

ji
M

C

i

i

ji

i

ij

)(2

)(

;
)(

)1(

)2(

)1(

)1(









 (33) 

The computation of 
)1(

ij
C without the restriction of 

choosing grid points 
i

 can be found from the expression 

of Eqs (33). Rather than evaluating )(
)2(

i
M  , it is worth 

to mention that one set of base polynomials can be derived 

uniquely by linear combination of another set of base 

polynomials in a vector space.  

 

The second and higher order derivatives of the smooth 

function may be written with the linear constrained 

relationships as [28]. 

 

NifCf

N

i

j

m

iji

m
,...,2,1,,,)()(

1

)()(
= 

=




 (34) 

 

Then, the (
th

m ) order derivatives can be expressed as 

 

NifCf

N

i

j

m

iji

m
,...,2,1,,,)()(

1

)1()1(
= 

=

−−



 (35) 

 

Now let us substitute Eqs (29) in Eqs (34) and (35) and 

using Eqs (33), and (31), the recurrence relation is written 

as follows 

 

ji

ji
Mm

M

C
CCm

C

i

i

m

ji

m

ijm

iiij

m

ij















=
+















−
−

=
+

−

−

;

;
)()1(

)(

)1(

)1(

1)(

1)()1(

)(






 (36) 

 

In N-dimensional vector space, the system of equations for 
)( m

ij
C  derived from Lagrange interpolating polynomials. 

 

2-3 Discretization of governing equation 

 

         The non-homogeneous grid points in case of DQM 

are to be considered as Chebyshev-Gauss-Lobatto [29] 

points in axial direction. The governing equation (Eqs 

(26)) for free vibration of FG pipes conveying fluid lying 

on the viscoelastic foundation can be transformed into the 

following expression by substituting the weighting 

coefficients of required derivatives 

( )

( )( ) 0]1[

2

2

1

)1(

1

)2(2

1

)4(

=+−+++

+

−+





=

==

jmk

j

N

j

ij

j

N

j

ijSj

N

j

ijk

Wkc

WCu

WCkuWCJ



  
(37) 

 

where Nj ,...,2,1= ; the boundary conditions at x =0 and 

L stated in Eqs (27) becomes: 

 

Clamped-Free: 

 

j

N

j

Njm

N

j

Nm

j

N

j

j

WCWC

WCW





==

=

−==

==

1

)3(

1

)2(

1

)1(

11

,1

,,0





 (38) 

 

By utilizing the DQM, Eqs (43) and (48) can be 

transformed to an assembled form given as follows: 

 

   

   

 

 

   

   

 

 

   

   

 

 
 0

00

00

=


















+


















+



















d

b

dddb

d

b

dddbd

b

dddb

bdbb

w

w

MM

w

w

CCw

w

KK

KK









 (39) 

In which the subscript b represents the displacements 

associated with the boundary points (at the two ends of the 

CNT conveying fluid), while d represents the remainder. 

The dot denotes the time derivative. For a self-excited 

vibration, the solution of Eqs (45) can be written as 

 



Eman R. B1, Talib. Eh. El2, Sadiq. M.H3 

                  Differential Quadrature Method for Dynamic behavior of   Function Graded 

Materials pipe conveying fluid on visco-elastic foundation   
      

 

57 

 

    )exp( tww =  
(40) 

 

Where  is the complex eigenvalue and written: 

 

)Im()Re(  +=  

      
T

db
www ,=  

(41) 

 

and  w is defined as an undetermined function of 

vibration amplitude. For solving Eq (39), the results 

presented that the eigenvalues are generally complex 

quantities, It should be noted that the )Im(  = is the 

system frequency of FG pipe while )Re(  = relates to 

system decaying rate and demonstrations its stability. The 

positive values of the real part express the instability 

region and the negative values means that the system is in 

stable condition. Substitution of Eqs (40) into Eqs (39) 

yields a homogeneous equation, which corresponds to the 

following eigenvalue problem 

 

     ( )   0
2

=++
d

wKCM   
(42) 

 

By reducing the order of Eqs (42), the quadratic 

eigenvalue problem given in Eqs (42) can be reformulated 

as a linear eigenvalue problem as follows: 

 

     XBXA =  
(43) 

 

Where 
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   
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





=

0M
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B

 and 

 








=

d

d

w

w
X


 

(44) 

 

The function “eigs” in MATLAB was adopted to obtain 

the eigenvalues and eigenvectors for Eqs (23). In general, 

the eigenvalues of the present system is complex, its real 

part indicates an attenuation or amplification factor of the 

vibration amplitude due to the dissipation or supply of the 

energy from the flow, and the imaginary part represents 

the natural frequency of the system. 

 

3-Results of vibration for FG pipe 

 

         Based on the DQM, the linear frequency and critical 

fluid velocity of the embedded FG pipe are obtained in 

this study. Firstly, the validity of the present analysis was 

checked by comparing the results for homogenous pipe on 

two parameter foundations with those obtained by 

Chellapilla, K. R and Simha, H. S [2]. A comparison 

between present and previous values of natural frequencies 

in the first four modes is given in Table 2, and Table 3 

depicts the first fourth eigenvalue of FG pipe conveying 

fluid flow with varying total numbers of grid points in the 

DQM for the C-F boundary conditions. It is seen that the 

results are convergence when (N =17) and they improved 

by increasing the number of grid points. It is noted that 

(N=20) is used in all Figures and Tables appear in this 

thesis. From Tables 2 and 3, it can see that the results 

converge rapidly by increasing the sampling points and 

also, close agreement exists between the present solution 

and the results of exact solution and Fourier series [20]. 

 

Table-2: Comparison between the first dimensionless 

natural frequencies of a homogenous pipe with (P-P) and 

(C-C) end condition )0( ====
ds

ckku ). 

BC Pinned-pinned 

 

 
u 

km 

0.5 2.5 10 

Present 

work 
Ref[2] 

Present 

work 
Ref [2] 

Present 

work 
Ref [2] 

0.1 

0 9.894 9.895 9.995 9.995 10.363 10.364 

1 9.3735 9.374 9.479 9.48 9.866 9.866 

2 7.6115 7.612 7.740 7.741 8.206 8.207 

0.3 

0 9.894 9.895 9.995 9.995 10.363 10.364 

1 9.354 9.355 9.460 9.461 9.846 9.847 

2 7.547 7.549 7.675 7.677 8.138 8.139 

0.5 

0 9.894 9.895 9.995 9.995 10.363 10.364 

1 9.336 9.337 9.441 9.442 9.827 9.828 

2 7.485 7.487 7.612 7.614 8.071 8.073 

BC Clamped-clamped 

 

 
u 

km 

0.5 2.5 10 

  
Present 

work 
Ref[2] 

Present 

work 
Ref[2] 

Present 

work 
Ref[2] 

0.1 0 22.384 22.384 22.431 22.429 22.598 22.596 

 1 22.093 22.093 22.14 22.138 22.308 22.307 

 2 21.195 21.197 21.242 21.244 21.417 21.419 

0.3 0 22.383 22.384 22.431 22.429 22.598 22.596 

 1 22.062 22.063 22.109 22.108 22.277 22.276 

 2 21.076 21.08 21.122 21.126 21.296 21.3 

0.5 0 22.382 22.384 22.431 22.429 22.598 22.596 

 1 22.032 22.033 22.079 22.078 22.247 22.246 

 2 20.958 20.960 21.005 21.008 21.178 21.180 

 

Table-3: Natural frequency of pipes for cantilever 

boundary condition   at u = 0. 

N 
1

  
2

  3
  

4
  

5 4.75071 - - - 

7 3.48659 21.42848 66.99381 - 

9 3.51674 22.19796 56.69972 107.31805 

11 3.51621 22.03653 62.56575 139.72182 
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17 3.51621 22.03773 61.70093 120.90238 

20 3.5160 22.0346 61.6974 120.9020 

Exact [20] 3.5160 22.0345 61.6972 120.9019 

 

 

3-1 Effect of the flow velocity  

           

          This subsection investigates the natural frequency of 

clamped-free end condition of FG pipe by varying the 

fluid velocity.  Table 4 presents the dimensionless 

vibration frequency as a function of the dimensionless 

flow velocity. The results are computed for the case of 

1=k  and 01.0,01.0,01.0 ===
dsm

ckk . As shown 

in this table, with increasing of u the results of the first 

three vibrations frequency decreased (i.e. the natural 

frequencies of FG pipe conveying flow is dependent on 

the fluid velocity (u). 

 

Table 4: Effect of flow velocity (u) on the lowest three 

natural frequencies.  

 

B.C u 
1

  
2

  3
  

Clamped-

Free 

0 4.9044 30.7358 86.0612 

1 4.8228 30.5439 85.8211 

2 4.5729 29.9660 85.0986 

3 4.1376 28.9954 83.8876 

 

 

Table 5 shows the critical velocities of FGM pipe with 

)10,10,50( ===
dsm

CKK  for C-F boundary 

conditions and Fig. 3 depicts the lowest three modes as 

functions of fluid velocity u with C-F end condition. It can 

be found from Table 5 that the critical velocity is 

increased with the increased of exponent k. It also can be 

observed from (Fig. 3), that the natural frequencies 

increased with increment exponent k. It could be 

concluded that the stability of FGM pipe increase with 

increasing exponent k. This is due to the verity that the 

content of Zirconia in FGM pipe increases whiles the 

content of Al decreases with increasing exponent k, and 

the Young’s modulus of Zirconia is much larger than that 

of Al. The FGM pipe displays some more complex and 

interesting dynamical behaviors when the exponent k=10. 

The divergence of first mode occurred at u=4.05 for 

cantilever pipe. On the other hand, it is also found that the 

exponent k can easily alter distributions of natural 

frequencies of FGM pipe conveying fluid. 

 

 

 

Table 5: Critical velocities for FG pipe for different 

exponents' k )10,10,50( ===
dsm

CKK .  

 

k=10 k=1 k=0 B.C 
Critical 

velocity 

4.05 3.15 2.25 C-F 
1d

u  

 

 

 

(a)

 

 
(b) 
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(c) 

 

 
 

 
 

Fig. 3: Lowest three modes of cantilever FGM pipe lying 

on visco-elastic foundation against fluid velocity (u) 

)10,10,50( ===
dsm

CKK  (a) exponent k=0, (b) 

exponent k=1, (c exponent k=10. 

 

The components of the natural frequency for a 

cantilevered FG pipe convey fluid with dimensionless 

fluid velocity at the various value of volume fraction 

exponent (k=0, 3, and 10) are presented in (Fig. 4), for 

numerical calculations in this case 

)10,10,50( ===
dsm

CKK
 

We note that, the imaginary 

part of vibration frequency and the critical of flow velocity 

will increase with an increase in volume fraction index k. 

Also, from this figure, it is noted that the dimensionless 

frequency decreases with an increase in fluid velocity. 

This is because higher fluid velocities weaken the 

structure’s stiffness. 

 
 

Fig. 4: The first mode of (C-F) FG pipe lying on visco-

elastic foundation against fluid velocity u for different 

values of gradient index k 

)10,10,50( ===
dsm

CKK . 

 

3-2 Effect of the power law exponent  

 

     This subsection demonstrated the effect of gradient 

index k on natural frequency of clamped-free end 

conditions of FG pipe with varies flow velocity. The 

continuously graded variation of physical properties of 

FGM in the composition of ceramic and aluminum phases 

across the wall thickness with a simple power law is 

considered. When the power law exponent k = 0 the pipe 

is made of the metal material and when k→ + ∞, the pipe 

is made of the ceramic material, respectively. Table-6 and 

Fig. 5 shows the effect of gradient index (k) and 

dimensionless flow velocity (u) on the first natural 

frequency of FGM pipe for (C-F) condition 

with )10,10,50( ===
dsm

CKK . This result shows 

that the increase for the gradient index leads to a decrease 

in natural frequency values of imaginary part. While 

vibration frequency of FGM pipe is increased with the 

increased in the exponent of volume fraction k. This is 

generally due to the fact that zirconia content in FGM pipe 

increases, whilst the aluminum content decrease with an 

increasing the exponent, and the zirconia Young’s 

modulus is frequently greater than that from aluminum.  
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Table-6: The effect of volume fraction index (k) and flow 

velocity on first eigenvalue for C-F boundary condition. 

 
k 

u B.C 
100 10 5 2 0 

6.01427 5.83415 5.66661 5.29359 3.51621 0  

C-F 
 

5.76993 5.57758 5.39794 4.99520 2.98870 2 

5.00509 4.770337 4.548082 4.037720 0.78813 4 

 

 
 

Fig. 5: Effect of power law exponent (k) on imaginary 

natural Frequency with different flow velocity 

(u) )10,10,50( ===
dsm

CKK  for (C-F) boundary 

condition. 

 

3-3 Effect of Viscoelastic Foundation parameter  

 

         This subsection demonstrated the effect of 

viscoelastic foundation parameter on natural frequency of 

(clamped-free) FG pipe with different dimensionless flow 

velocity.  Fig. 6 shows the effect of 

coefficients ),,(
dsm

CKK in the standard viscoelastic 

model on the imaginary part of frequency with different 

flow velocity. The results indicated that 

increasing
m

K and 
s

K  leads to improved stiffness of 

system and consequently the stability increases while the 

imaginary part of frequency decreases with an increase of 

foundation viscous damping
d

C .This is because the 

increment of foundation viscous damping leads to the 

reduction of dynamic properties of the pipe structure. As 

can be seen, the influence of m
K on system stiffness is 

higher than
s

K . This is due to the fact that increasing 

elastic coefficient increases the system stiffness. 

 

 

 

 

 

 

(a) 

 

 

(b) 
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(c) 

 

Fig. 6:  Effect of visco-elastic foundation parameter on 

first natural frequency for (C-F) FG pipe with different 

flow velocity u,   a) )1,10,20( === kCK
ds

, 

b) )1,10,50( === kCK
dm

, and c)
 

)1,20,50( === kKK
sm

 

 

 

(Fig. 7) illustrate the effect of damping coefficient d
C  on 

the dimensionless frequency and damping parts of 

fundamental eigenvalues of cantilever FG pipe conveying 

flow. Here, the results are presented for different 

dimensionless damping parameters, d
C  = 0, d

C  = 5 and 

d
C  = 10.   In this case, 50=

m
K , 20=

s
K  and 

gradient index 1=k . According to Figs. 7, the damping 

property of the viscoelastic foundation tends to decrease 

the bending stiffness of the FG pipe conveying flow. 

However, as can be seen, for a damped system, the 

bifurcation point happened earlier than system without 

damping, while the buckling instability and resonance 

frequency occur for multi values of damping coefficients 

and both the imaginary and the real parts of eigenvalue 

reach zero at this point. It is remarkable to note that 

increment the damping coefficient causes to induce the 

damping force and consequently the absorption of 

vibration energy by the structure is increased. It is worth 

mentioning that with increasing damping foundation, 

system stability decreased and becomes susceptible to 

buckling. 

 

 

 
 

Fig. 7: Effect of damping foundation parameter on first 

natural frequency for (C-F) FG pipe with different flow 

velocity. 

 

4- Conclusions  

 

     The dynamic behavior of cantilevered FG pipe 

conveying flow on the visco-elastic foundation is 

investigated in this paper. The properties of the material 

change constantly across the pipes thickness and depend 

on power law distribution. The vibration equations based 

on the Euler-Bernoulli beam theory and solved 

numerically using the DQ method. The numerical results 

show: 

 

1- The DQM is more successful to solve the dynamic 

problem of FG pipe conveying fluid as compared 

to others method.   

 

2- As the gradient index increases, the vibration 

frequency of the FGM flow pipe and the critical 
velocity of the (C-F) boundary will increase. In 

this way, we can improve the vibration and 

stability characteristics of the flow pipe by 

adjusting the gradient distribution of the FGM 

pipe material. 

 

3- Increasing m
K and s

K  leads to improved stiffness 

of system and consequently the stability increases 

while the imaginary part of frequency decreases 

with an increase of foundation viscous 

damping d
C . 

 

NOMENCLATURE 

 
Symbol Description Units 
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p
A ,

f
A  

Cross-sectional area of the FG 

pipe and the fluid 

m2 

d
C

 

damping coefficient of 

foundation 

Pa. s 

)( m

ij
C  

Coefficient of differential 

quadrature 

----- 

)( nE  Modulus of elasticity for 

materials  

GPa 

R
E

 

Ratio of ceramic to metal of 

modulus of elasticity 

----- 

( )
)1(

x
f  

function  of differential 

quadrature 

----- 

ext
F

 

Viscoelastic foundation force N 

I   Second moment of area  m4 

h  Thickness of pipe m 

R
h

 

Ratio of thickness to mean 

radius of pipe 

---- 

k  Gradient index of FGM ------ 

m
K  

Winkler stiffness MPa 

s
K  

Foundation constant KN 

( )Ckk
ms

,,  
Dimensionless viscoelastic 

foundation 

----- 

L  Length  of pipe m 

f
m

 
The mass density for fluid Kg/m3 

p
m

 

Effective mass of pipe Kg/m3 

( )sn −  Normal coordinate system ------ 

i
R ,

o
R  

Inner and the outer radii m 

f
T

 
Kinetic energy for fluid of  

FGM pipe 

N.m2/s2 

p
T

 
Kinetic energy for pipe of  FGM 

pipe 

N.m2/s2 

t  Time sec 

T
 

Virtual work of kinetic energy N.m2/s2 

s
U  

strain energy of FGM N.m2/s2 

u  Dimensionless of flow velocity ----- 

),( tx
u  

Transverse displacements m 

s
U

 

Virtual work of internal forces N.m 

( )wvu ,,  Displacements along the 

coordinate directions ( )zyx ,,  

------ 

f
V  

Flow velocity of fluid m/s 

ext
W  

Virtual work viscoelastic 

foundation 

N.m 

( )zyx ,,  
Cartesian coordinate system m 

( ))(),( nZsY  Coordinate point on normal 

coordinate system. 

m 

Greek Symbols 

)( n
 

Density for materials kg/m3 

R


 

Ratio of ceramic to metal 

density 

----- 

x


 

Strain of FGM ---- 

x
  

Stress of FGM GPa 

v  Poisson's ratio ----- 

τ Non dimensional time ------ 

)( n
 

Flexural stiffness GPa. m2 


 

Mass ratio ----- 

  
Natural frequency Rad/s 
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