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Abstract

The objective of this work is to study the dynamic behavior of FG pipe conveying fluid lying on the visco-elastic
foundation using differential quadrature method. The material properties change constantly across the pipes thickness and
depend on power law distribution. The vibration equations for FG pipe are obtained by using Hamilton's principle based
on the Euler- Bernoulli model with (Clamped-Free) boundary conditions. An efficient numerical method by differential
quadrature (GDQ) is developed to find the natural frequencies and stability for FG pipe. The effects gradient index and
foundation parameters in fluid conveying FG pipes with certain flow velocity on frequencies are investigated. The
present method of solution is accurately checked by comparing their results for fluid conveying pipe with the available
results in the literature. From the comparison, a reasonable agreement was found. An increase in the gradient index

results in an increase in the critical velocities for FG pipe.

Keywords: DQM, FGM pipe, visco-elastic foundation

1- Introduction

The dynamic behavior of piping convey fluid have been
widely range of applied due to its extensive in different
application such as industries, petroleum, chemical,
aerospace, people’s daily life, gasoline transportation
systems, biological engineering systems, microfluidic,
heat exchanger and Nano-fluidic devices [1]. The behavior
of dynamic for pipes convey fluid had been studied by
many researchers such as Chellapilla, K. R and Simha, H.
S (2008) [2] investigated the vibrations behavior of fluid
conveying pipes lying on the two-parameter foundation
with different boundary conditions. They obtained that the
Pasternak parameter of foundation tends to increase the
fundamental frequency and the critical flow velocity also
increase for the same Winkler constant. Tornabene F.
et.al. (2010) [3] studied the stability of a cantilever fluid
conveying pipe by using the (GDQ) method. They found
that at a given value of the mass ratio, only one critical
flow speed can exist for the system. Also, the results of
this paper showed that this method can be conveniently
used to perform parametric studies of the stability of
various pipes conveying fluid. Lu, P, & Sheng, H (2012)
[4] established exact Eigen equations for the problems of
(clamped-clamped) and (simply supported) of pipe
conveying fluid. The dynamic stability properties of the
fluid structure coupled systems with and without
considering the elastic foundation effect are discussed. A
new analytical model for the dynamic behavior of a pipe
conveying laminar flow with general boundary conditions
was derived by Al-Hilli, A. H (2013) [5]. They found that
the increase of the linear and rotational impedance leads to

an increase in natural frequencies. Also when flow
velocity equal zero or critical value, there is no difference
in the frequency parameter for any value of the mass ratio.
Mustafa, N. H (2014) [6] studied the dynamic stability for
fluid-conveying pipe lying on the visco-elastic foundation
with simply supported pipeline using the finite element
method. The results showed that the increase in shear
stiffness parameter leads to raising the value of the critical
velocity of the fluid, while the increase in the damping
parameter of foundation decreases it. A free vibration of
the beam carrying fluid with axial motion and multiple
supports was discussed by Kesimli A, et.al. (2016) [7].
Hamilton's principle was used to find the equations of
motion and multiple time-scaled methods were used in the
solution of vibration equation. According to these results,
an increase in beam coefficient for all locations of support
also increases the values of natural frequency. On the
other hand, when the velocity of fluid increases, natural
frequencies tend to decrease. Zare A, etal (2017) [8]
investigated the dynamic attitude of fluid-conveying pipes
using Isogeometric analysis (IGA). The vibration equation
was derived based on the Bernoulli- Euler theory and the
virtual displacements were used in the analysis. Also, the
rotary inertia terms were included in their derivation. The
results showed that the Isogeometric approach gives the
critical velocity of fluid high precision value for different
conditions.  Yun-dong, L, and Yi-ren, Y (2017) [9]
studied the vibration analysis for fluid conveying pipe
with elastic end conditions using the variation iteration
method (VIM). They found the natural frequency, critical
flow velocity and mode shape for different end conditions.
Also, they demonstrated that VIM is efficient and high
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precision and the VIM can be also used for analysis of
another gyroscope system. The dynamic behavior and
stability for micro scale pipes conveying fluid with
pinned-free boundary conditions were studied by Hu, K
(2017) [10] using the differential quadrature (DQ) method.
They were found the pinned-free flexible micro pipe was
stable at low flow velocities. At high sufficiently flow
velocities, the system becomes subject to flutter instability.

With the development of materials science and
technology, a new type of composite materials, i.e.
functionally gradient (FG) material, which has many
excellent properties, has been made [11, 12], the
mechanical behavior of FGM has been studied by
researchers in past decades. Piovan, M. T and Sampaio, R
(2008) [13] addressed the problem of vibrations for axial
moving flexible beam made of FGMs and solved using the
finite element method. The results showed that when the
main beam component is ceramics there is high oscillatory
deployment, but when the main beam component is
metallic, the frequency of oscillation is lower. They show
that this type of beam model is quite useful for the analysis
of deploying beam, for both functionally graded and
isotropic materials. Sina, S. A, et.al (2009) [14] developed
the new theory of beam different from the traditional shear
deformation theory for analyzed free vibration of function
graded beam. They were found that the new beam theory
is a little different in natural frequency from the first-order
shear deformation theory. Alshorbagy, A, et.al (2011) [15]
investigated the dynamic characteristics of the FGM beam
using FEM. The virtual work principle with Bernoulli -
Euler theory was used to drive the vibration equation.
They found that the slenderness ratio has no effected on
the vibration frequencies or mode shapes. Kim, Y. W
(2005) [16] studied the effect of the temperature-
dependent vibration characteristics of the FG rectangular
plates. Rayleigh-Ritz procedure and 3 SDT of plate were
used to find the motion's equation. Numerical results
confirmed that the characteristics of the vibration were
significantly influenced by the plate geometry,
composition of materials, and high temperature. The
nonlinear free vibration of (FGM) Nano beams resting on
the elastic foundation was studied by Vosoughi, A. R
(2016) [17], DQM was applied to discretize the nonlinear
vibration equation.  The effect of the small scale
parameter, boundary conditions, Length-to-height ratio
and the foundation parameters on the nonlinear free
vibration response of the FG Nano beams was
investigated. Ebrahimi, F and Barati, M. R (2018) [18]
investigated free vibration of FG Nano beams rested on
viscoelastic foundation and subjected hydrothermal
loading. They found that the viscoelastic foundation for
(Clamped-Clamped) boundary condition has a larger
critical damping coefficient as compared with (Clamped-
pinned) and the later has larger critical damping
coefficient than (pinned-pinned) FG Nano beam. Also,

they obtained that the real and imaginary value of Eigen
frequencies was reduced by increasing gradient index.
Wang, Z. M and Liu, Y. Z (2016) [19] used the symplectic
method to investigate the transverse vibration of FG pipe
conveying fluid with clamped at both ends and Hamilton's
principle was used to obtain the motion's equation. The
effect of the gradient index on the critical flow velocity
and complex frequency of FGM pipe conveying fluid was
discussed. Deng, J. etal (2017) [20] investigated the
dynamic behaviors of a viscoelastic FG pipe conveying
fluid with multi-span using the dynamic stiffness method.
From the result, the influence of volume fraction exponent
on the dynamic behaviors is clear when it is less than 10.
Also, the results showed that the internal damping
coefficient of the simply-supported FGM pipe had no
effect on critical velocities. Tang, Y, and Yang, (2018)
[21] studied the post-buckling and nonlinear vibration of a
fluid-conveying FG pipe made. They found that the
nonlinear frequency was increased with increased of the
initial amplitude, but decreased as the flow velocity. In
addition, both the critical flow velocity and the non-linear
vibration frequency of the FGM pipe are rapidly
decreasing with an increase in the gradient index of the
material.

In this paper, the equation of motion is first examined for a
pipe conveying fluid resting on viscoelastic and
constructed with FGM using Euler- Bernoulli beam theory
and Hamilton’s principle. Then, use a differential
quadrature method; it is converted to solve eigen-problem
(natural frequency). Also, performed the transverse
dynamic characteristics and stability of a clamped-Free
FG pipe conveying fluid for different flow velocity the
power law

2- Mathematical formulation

Fig. 1 displays a schematic diagram for FGM pipe
conveying fluid resting on a viscoelastic foundation. L is
the length, h is thickness of pipe, (u) is the flow velocity,

A, and A, respectively is the cross-sectional area of the

FG pipe and the fluid, R andR, is the outer and inner

radius of the pipe. Symbols u andw represent the pipe
displacement in the x and z directions, respectively. In
derivation of this model, the pipe is assumed to obey
Euler—Bernoulli Beam theory. The structure of the pipe
has small deformation, the conveyed fluid is non-viscous
and incompressible, the effects of gravity and internal
damping are ignored and the power-law material property
was considered as continuously varying across wall
thickness direction of the pipe.
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Fig. 1: (a) Side view of FGM pipe conveying fluid, (b) cross-section and coordinate system (n —s), and (c) Geometry of
FGM pipe and visco-elastic foundation.

The dimensions and properties used in numerical results
for FG pipe are taken as follows [21]. Aluminum and
zirconium were selected respectively as metal materials
(external) and ceramic (internal) of the FGM pipe. Their
materials properties are given in Table-1. In this research
Poisson's ratio (v ) is considered to be a constant and the

valueis v = 0.3

Table-1: Material properties of the constituents of FGM
pipe

materials p (kg/imd) | E (GPa) | Radius(m)
Metallic (Outer) 2700 70 0.1
Ceramic (Inner) 3000 151 0.08

The effective function F (n) of material properties are
given by [22]:

2n+h
2h

F(n)=(F, - Fi){

-
\

Where (n) is a normal coordinate across the wall thickness
(-h/2 < n <h/2). The effective modulus of elasticity

E (n)and the effective density p(n)for power law
exponent are:

(1)

k

W

J

2n + h
2h

\

k

E(n)=(Eo—Ei)(2n+h) +E, @
L 2h )
2n+h)"

p(n)=(p0—pi)( s +p, ®
L 2h )

(Fig.2) shows the variation of volume fraction Vv, along

pipe thickness for different gradient index according to the
relation in Eqgs (1). It shows that when exponent (k = 0), a
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homogeneous pipe becomes; Also, the exponent k strongly

affects the material properties of the FGM pipe.
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Fig. 2: Volume fraction variations along the thickness of pipe for different values of power gradient index (k).

To derive the equation of motion, the energy principle and
the variation approach will be used. To this end, the

kinetic energy for internal fluid flow T, is written as
follows [23]:
1t Tra
Tf=—‘[mf|(—w+ f—) +V /! |dx (4)
2 L\ ot ox ) |

Where m , is represented the mass density for fluid

(5)

The kinetic energy's for the FG pipe can be expressions as
[23]:

Tp :iimp(a—wrdx
2 (ot )

is represented the effective mass of pipe, the

(6)

where m |
effective of pipe mass can be written as

27Ry, hi2 R +n
m = .[ Ip(n) n dsdn
0 -h/2 Rm
e i (2n+h)k 1 n (7)
= [ [ 1G,=pr) +p, || 1+ —|dnds
0 7h/2|_ k 2h ) J Rm
:m*pk
Where
1+ k
m =2zR_hp .p, = .
k +1
1 1
+hR(1—pR) - @)
k+1 2(k +1)
Pe h E.
Pr = ’hR =—,E; =
pm Rm Em

The total kinetic energy is definedas T = T, + T, and its

variation ST is obtained as:
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Assuming that the pipeline is elastic, the stress — strain
relation is given by:

E (i?}

l—m

(11)

The transverse displacements along u , ., is written as

—(Y(S)—ndiw—w
L ds ) ox

follows:

oW
_y—=
oX

(12)
According to small deformation assumption, the axial

strain is written as:

an‘if; W
rf.s,J at

o
£ =

: :1. _ _| F(s)— (13)
che |

Then, the expression of strain energy for FG pipe is
obtained as:

1 L%
5 [ [ [J g (R, + nldGdndx (14)
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L h2 27Rm s

:_H I o s (R :n]dsdndx

Now, substltutlng Egs (11) and (13) in Egs (15), and
perform some manipulation, the bending strain energy is
expressed in terms of pipe deflection as follows:

de
2

Where a is the flexural stiffness for FGM pipes, i.e.

(16)
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the flexure stiffness of FG pipe is written as
«=-al, (18)
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The variation of SU _ is written as:
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ax’ ox’

(20)

o]
s 0

ou dx

ext

The virtual work sW " done by the external transverse

ext

forces F exerted on the FG pipe by the viscoelastic
foundation can be calculated as:
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o'w  ow (21)
F o=k, —-c— -k, w
oX ot
ext L 0w w
SW =J' (k, —— ¢ —— k,, w)dwdx
0 oX ot

2-1 Hamilton principle

The general form of Hamilton’s principle for pipes
conveying flow was given by Benjamin [24], the dynamic
version of a virtual displacements principles or Hamilton’s
principle is:

t2
5I(T ~U _+W ™ )dt

4

(22)

ow =0 att=t =t,

Substituting Egs (10), (20) and (21) into Egs (22),
integrating by parts and presenting the coefficients of sw
zero, lead to the vibration equations as:

64w ) azw 82W
a——+[m Vv -K ]J—+2v,m, +
o0X o0X oxot
2 (23)
o'w ow
[0 +m ] +C,—+K, w=0
P 2
ot ot

Clamped—free (C—F) is used to show the effects of end
stiffness on the vibrational characteristics of FG pipe
conveying fluid lying on viscoelastic foundation.
Clamped-Free:

ow (0, 1)
w(0,t) = ———= =0,
ox (24)
a'w(L,t) a2 w(L,t) 0
ax’ ox’
For convenience, these equations can be written

dimensionless by using the following definition:

X w t @
7 > — W — —,7 — >
L L L m ., + m
mf mf
u —> V. . L—, 8 — "
o’ m . + m
LA L? (25)
K, — K_ .k, —> K
@
c,L?

CcC — =
\/a’(mf +a’)

Substituting the dimensionless parameters Egs (25) into
Egs (23), the linear dimensionless form of the vibration
equation is acquired:

4 2 1 2

o'W ) o'W ~ 0w
3, ——+[ut -k ]—+2up?
on 0 onor (26)
R oW
+[B+-8)p ]—5+C, + K, ,W =0
or or
The C-F dimensionless forms are readily studied as:
dw (0,7)
W (0,7)=————==0
dn (27)
d'w (L,z) d’w@,r) o
d772 d773

2-2 Differential quadrature method

The DQM is a numerical method, and it requires less
grid points and then less computer time and storage to
obtain acceptable accuracy. Successful applications of the
DQM in many engineering problems have been
demonstrated by numerous researches [25, 26]. The key
procedure in the application of DQ lies in a determination
of the weighting coefficients [25], so that its first

derivative f “’(x) at any grid point over [a, b] can be
found by the following approximation:

N

e f(x, ) i=12. N

j=1

~ (28)

£ (n)

where the coefficient matrix Cif” can be specified in
various fashions f “ (x) finds the first order derivative of

f (x) with respect to x atx, presented by Bellman et al
(1972) [27]. For generality, GDQ chooses the base
polynomials (or test functions) g, (») to be the Lagrange
interpolating polynomial:
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9, (1) = - (29)
(n-nIM " (n,)

Where
N N

M) =T[ -7, M@ =T],-n,) GO
i=1 i=l,izk

With these assumptions, Eqs (29) converts to:
N(n.7,)

9,(m)= Tk (31)
M ()

The First order derivatives of the smooth function may be
written as:

1)
Cfl): N (77i:77,-) (32)
' M “ )
Substituting this expression in Eq. (32), we get
(M Y@y
i# ]
(60 i =1 33
Cij . J ( )
MZ @) j
l2m Y ()

The computation of Cifl) without the restriction of
choosing grid points 7 , can be found from the expression

of Egs (33). Rather than evaluatingM *’ (5 .) , it is worth

to mention that one set of base polynomials can be derived
uniquely by linear combination of another set of base
polynomials in a vector space.

The second and higher order derivatives of the smooth
function may be written with the linear constrained
relationships as [28].

N
n n : 34
My c™im )., i=12,., N (34)
i=1

Then, the (m ") order derivatives can be expressed as

N

o . . 35

fq( 1)(77i)§ E Ci} 1)f(77],),”|:1,2,..., N 33
i=1

Now let us substitute Egs (29) in Eqgs (34) and (35) and
using Eqgs (33), and (31), the recurrence relation is written
as follows

( (
(1) ~ (m)-1 ij
m[Cij C. -—

(m)
cim =

| M (m+1)(77‘)

[ (menm P

In N-dimensional vector space, the system of equations for
(m) : . ) .
C; derived from Lagrange interpolating polynomials.

2-3 Discretization of governing equation

The non-homogeneous grid points in case of DQM
are to be considered as Chebyshev-Gauss-Lobatto [29]
points in axial direction. The governing equation (Eqs
(26)) for free vibration of FG pipes conveying fluid lying
on the viscoelastic foundation can be transformed into the
following expression by substituting the weighting
coefficients of required derivatives

N N
Iy W+ (Ut -k )Y cPw,

j=1

N
+ uu\/;Z c,'w,
j=1

j=1

(37)

tlea+1p+@-8)p 04" +k W, =0

where j = 1,2,..., N ; the boundary conditions at x =0 and
L stated in Eqs (27) becomes:

Clamped-Free:

N
1)
n=0w, =Y cow,,
it (38)
N
(2) (3)
Nme = _z CNj W

j=1

i

N
n =1,Z C
j=1

By utilizing the DQM, Egs (43) and (48) can be
transformed to an assembled form given as follows:

|—[Kbb] [Kbd ]—|[{Wb

L[de] [Kdd ]JL{Wd L[Cdb] [Cdd ]JL{Wd}J (39)
[ o] [o] T({w,})

+ =10

] )it =
In which the subscript b represents the displacements
associated with the boundary points (at the two ends of the
CNT conveying fluid), while d represents the remainder.
The dot denotes the time derivative. For a self-excited
vibration, the solution of Eqgs (45) can be written as

h
}J>+
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{w) = {Whep( at) (40
Where 2 is the complex eigenvalue and written:
A =Re( 1)+ Im(1)

(41)

wh={lw, ) {w, )}

and {w }is defined as an undetermined function of

vibration amplitude. For solving Eq (39), the results
presented that the eigenvalues are generally complex

quantities, It should be noted that the A = Im( 1) is the
system frequency of FG pipe while 2 = Re( 1) relates to

system decaying rate and demonstrations its stability. The
positive values of the real part express the instability
region and the negative values means that the system is in
stable condition. Substitution of Eqs (40) into Eqs (39)
yields a homogeneous equation, which corresponds to the
following eigenvalue problem

(42)

(2*[M ]+ alc ]+ [k ]fw, } = {o}

By reducing the order of Eqs (42), the quadratic
eigenvalue problem given in Eqgs (42) can be reformulated
as a linear eigenvalue problem as follows:

(43)

[Alix}= a[B]{x]

Where
KD 01T Tl e
BRI V0 | V3 N I
_ [de]
X V=
{x} TWJ

The function “eigs” in MATLAB was adopted to obtain
the eigenvalues and eigenvectors for Egs (23). In general,
the eigenvalues of the present system is complex, its real
part indicates an attenuation or amplification factor of the
vibration amplitude due to the dissipation or supply of the
energy from the flow, and the imaginary part represents
the natural frequency of the system.

3-Results of vibration for FG pipe

Based on the DQM, the linear frequency and critical
fluid velocity of the embedded FG pipe are obtained in
this study. Firstly, the validity of the present analysis was
checked by comparing the results for homogenous pipe on
two parameter foundations with those obtained by
Chellapilla, K. R and Simha, H. S [2]. A comparison

between present and previous values of natural frequencies
in the first four modes is given in Table 2, and Table 3
depicts the first fourth eigenvalue of FG pipe conveying
fluid flow with varying total numbers of grid points in the
DQM for the C-F boundary conditions. It is seen that the
results are convergence when (N =17) and they improved
by increasing the number of grid points. It is noted that
(N=20) is used in all Figures and Tables appear in this
thesis. From Tables 2 and 3, it can see that the results
converge rapidly by increasing the sampling points and
also, close agreement exists between the present solution
and the results of exact solution and Fourier series [20].

Table-2: Comparison between the first dimensionless
natural frequencies of a homogenous pipe with (P-P) and

(C-C) end condition(u = k =k  =c, =0)).

BC Pinned-pinned
Km
i} u Presento.5 Presentz5 Present10
’ work Ref[2] work Ref [2] work Ref [2]
0| 9.894 | 9.895 | 9.995 9.995 | 10.363 | 10.364
01| 1| 93735 | 9374 | 9479 9.48 9.866 9.866
2 | 7.6115 7.612 7.740 7.741 8.206 8.207
0| 9.894 | 9.895 | 9.995 9.995 | 10.363 | 10.364
03| 1| 9354 | 9355 | 9.460 9.461 9.846 9.847
2 7.547 7.549 7.675 7.677 8.138 8.139
0| 9.894 | 9.895 | 9.995 9.995 | 10.363 | 10.364
05| 1| 9336 | 9337 | 9441 9.442 9.827 9.828
2 7.485 7.487 7.612 7.614 8.071 8.073
BC Clamped-clamped
Km
g " 05 25 10
o | et | "t | ety | P [ et
0.1 | 0| 22.384 | 22.384 | 22.431 | 22.429 | 22.598 | 22.596
1| 22.093 | 22.093 | 22.14 | 22.138 | 22.308 | 22.307
2 | 21.195 | 21.197 | 21.242 | 21.244 | 21.417 | 21.419
0.3 | 0 | 22.383 | 22.384 | 22.431 | 22.429 | 22.598 | 22.596
1| 22.062 | 22.063 | 22.109 | 22.108 | 22.277 | 22.276
2| 21.076 | 21.08 | 21.122 | 21.126 | 21.296 213
0.5 | 0 | 22.382 | 22.384 | 22.431 | 22.429 | 22.598 | 22.596
1| 22.032 | 22.033 | 22.079 | 22.078 | 22.247 | 22.246
2 | 20.958 | 20.960 | 21.005 | 21.008 | 21.178 | 21.180

Table-3: Natural frequency of pipes for cantilever
boundary condition atu=0.

N Ay Ay 44 Ay

5 4.75071 - - -

7 3.48659 | 21.42848 | 66.99381 -

9 3.51674 | 22.19796 | 56.69972 | 107.31805
11 3.51621 | 22.03653 | 62.56575 | 139.72182
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17 3.51621 | 22.03773 | 61.70093 | 120.90238
20 3.5160 | 22.0346 | 61.6974 | 120.9020
Exact [20] | 3.5160 | 22.0345 | 61.6972 | 120.9019

3-1 Effect of the flow velocity

This subsection investigates the natural frequency of
clamped-free end condition of FG pipe by varying the
fluid velocity. Table 4 presents the dimensionless
vibration frequency as a function of the dimensionless
flow velocity. The results are computed for the case of
k =1 gndk, = 0.01,k, = 0.01,c, = 0.01 . As shown

in this table, with increasing of u the results of the first
three vibrations frequency decreased (i.e. the natural
frequencies of FG pipe conveying flow is dependent on
the fluid velocity (u).

Table 4: Effect of flow velocity (u) on the lowest three
natural frequencies.

BC |u| 2 2, 2,
0 | 4.9044 | 30.7358 | 86.0612
Clamped- | 1 | 4.8228 | 30.5439 | 85.8211
Free | 2 | 45729 | 29.9660 | 85.0986
3 [ 4.1376 | 28.9954 | 83.8876

Table 5 shows the critical velocities of FGM pipe with
(K, =5,K,=10,c, =10) for C-F boundary

conditions and Fig. 3 depicts the lowest three modes as
functions of fluid velocity u with C-F end condition. It can
be found from Table 5 that the critical velocity is
increased with the increased of exponent k. It also can be
observed from (Fig. 3), that the natural frequencies
increased with increment exponent k. It could be
concluded that the stability of FGM pipe increase with
increasing exponent k. This is due to the verity that the
content of Zirconia in FGM pipe increases whiles the
content of Al decreases with increasing exponent k, and
the Young’s modulus of Zirconia is much larger than that
of Al. The FGM pipe displays some more complex and
interesting dynamical behaviors when the exponent k=10.
The divergence of first mode occurred at u=4.05 for
cantilever pipe. On the other hand, it is also found that the
exponent k can easily alter distributions of natural
frequencies of FGM pipe conveying fluid.

Table 5: Critical velocities for FG pipe for different
exponents'K(K | =50 ,K_  =10,C, =10) .
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Fig. 3: Lowest three modes of cantilever FGM pipe lying
on visco-elastic foundation against fluid velocity (u)
(K, =5,K =10,C, =10) (a)exponent k=0, (b)
exponent k=1, (c exponent k=10.

The components of the natural frequency for a
cantilevered FG pipe convey fluid with dimensionless
fluid velocity at the various value of volume fraction
exponent (k=0, 3, and 10) are presented in (Fig. 4), for

numerical calculations in this case
(K, =5 ,K,=10,c, =10) We note that, the imaginary

part of vibration frequency and the critical of flow velocity
will increase with an increase in volume fraction index k.
Also, from this figure, it is noted that the dimensionless
frequency decreases with an increase in fluid velocity.
This is because higher fluid velocities weaken the
structure’s stiffness.

10¢

--+- k=0
== k:3 *
--4- k=10

Imaginary part of eigenfrequency

" ;
Dimensionless Flow Velacity

8 10

Fig. 4: The first mode of (C-F) FG pipe lying on visco-
elastic foundation against fluid velocity u for different
values of gradient index k
(K, =50,K_=10,C, =10) .

3-2 Effect of the power law exponent

This subsection demonstrated the effect of gradient
index k on natural frequency of clamped-free end
conditions of FG pipe with varies flow wvelocity. The
continuously graded variation of physical properties of
FGM in the composition of ceramic and aluminum phases
across the wall thickness with a simple power law is
considered. When the power law exponent k = 0 the pipe
is made of the metal material and when k— + oo, the pipe
is made of the ceramic material, respectively. Table-6 and
Fig. 5 shows the effect of gradient index (k) and
dimensionless flow velocity (u) on the first natural
frequency of FGM pipe for (C-F) condition
with(K  =50,K_ =10,C, =10). This result shows

that the increase for the gradient index leads to a decrease
in natural frequency values of imaginary part. While
vibration frequency of FGM pipe is increased with the
increased in the exponent of volume fraction k. This is
generally due to the fact that zirconia content in FGM pipe
increases, whilst the aluminum content decrease with an
increasing the exponent, and the zirconia Young’s
modulus is frequently greater than that from aluminum.
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Table-6: The effect of volume fraction index (k) and flow
velocity on first eigenvalue for C-F boundary condition.

K
BL | u 0 2 5 10 100
0 | 351621 | 529359 | 566661 | 583415 | 6.01427
C-F | 2| 298870 | 499520 | 539794 | 557758 | 5.76993
4 | 0.78813 | 4.037720 | 4548082 | 4.770337 | 5.00509
6 T T T T T T T T
55 F

on

e
wn
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wn

Dimenssionless frequency,lm ( w)
(%] e

o1 2 3 4 5 & T & 9 1
Gradeint index (k)

Fig. 5: Effect of power law exponent (k) on imaginary
natural Frequency with different flow velocity
(W(k, =50 ,k_ =10,c, =10) for(C-F)boundary
condition.

3-3 Effect of Viscoelastic Foundation parameter

This subsection demonstrated the effect of
viscoelastic foundation parameter on natural frequency of
(clamped-free) FG pipe with different dimensionless flow
velocity. Fig. 6 shows the effect of

coefficients (K, K ,C,)in the standard viscoelastic

model on the imaginary part of frequency with different
flow  wvelocity.  The  results indicated  that

increasing K and K_ leads to improved stiffness of

system and consequently the stability increases while the
imaginary part of frequency decreases with an increase of
foundation viscous dampingc,.This is because the

increment of foundation viscous damping leads to the
reduction of dynamic properties of the pipe structure. As

can be seen, the influence of K _ on system stiffness is

higher thanK _. This is due to the fact that increasing
elastic coefficient increases the system stiffness.
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Fig. 6: Effect of visco-elastic foundation parameter on
first natural frequency for (C-F) FG pipe with different
flow velocity u, a)(K,=20,C, =10,k =1),

b)(K, =5,C, =10,k =1),and c) (K, =5 K, =20,k =1)

(Fig. 7) illustrate the effect of damping coefficient C, on

the dimensionless frequency and damping parts of
fundamental eigenvalues of cantilever FG pipe conveying
flow. Here, the results are presented for different

dimensionless damping parameters, C, =0, C, =5 and

C, =10. In this case, K and

gradient index k = 1. According to Figs. 7, the damping
property of the viscoelastic foundation tends to decrease
the bending stiffness of the FG pipe conveying flow.
However, as can be seen, for a damped system, the
bifurcation point happened earlier than system without
damping, while the buckling instability and resonance
frequency occur for multi values of damping coefficients
and both the imaginary and the real parts of eigenvalue
reach zero at this point. It is remarkable to note that
increment the damping coefficient causes to induce the
damping force and consequently the absorption of
vibration energy by the structure is increased. It is worth
mentioning that with increasing damping foundation,

system stability decreased and becomes susceptible to
buckling.
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Fig. 7: Effect of damping foundation parameter on first
natural frequency for (C-F) FG pipe with different flow
velocity.

4- Conclusions

The dynamic behavior of cantilevered FG pipe
conveying flow on the visco-elastic foundation is
investigated in this paper. The properties of the material
change constantly across the pipes thickness and depend
on power law distribution. The vibration equations based
on the Euler-Bernoulli beam theory and solved

numerically using the DQ method. The numerical results
show:

1- The DQM is more successful to solve the dynamic

problem of FG pipe conveying fluid as compared
to others method.

2- As the gradient index increases, the vibration
frequency of the FGM flow pipe and the critical
velocity of the (C-F) boundary will increase. In
this way, we can improve the vibration and
stability characteristics of the flow pipe by

adjusting the gradient distribution of the FGM
pipe material.

3- Increasing K , and K, leads to improved stiffness

of system and consequently the stability increases

while the imaginary part of frequency decreases
with an increase of

foundation  viscous
dampingC, .
NOMENCLATURE
Symbol Description

‘ Units ‘
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A A Cross-sectional area of the FG m? sU Virtual work of internal forces N.m
p! f s
pipe and the fluid
Displacements along the |  ------
c damping coefficient of Pa.s (u,v,w) P g
‘ foundation coordinate directions (x, y, z)
cm Coefficient of differential | --—-- vV, Flow velocity of fluid m/s
! quadrature
_ sw Virtual work viscoelastic N.m
E(n) Modulus of elasticity for GPa )
. foundation
materials
_ _ (x 7 ) Cartesian coordinate system m
E Ratio of ceramic to metal of |  ----- Y
R - . - -
modulus of elasticity (Y (s), Z (n)) Coordinate point on normal m
Fo (n) function of differential | ----- coordinate system.
quadrature Greek Symbols
E o Viscoelastic foundation force N o (n) Density for materials kg/m?
I Second moment of area m* o Ratio of ceramic to metal | -
h Thickness of pipe m " density
h Ratio of thickness to mean ¢ Strain of FGM
R X
adius of pipe
radlus ot o Stress of FGM GPa
k Gradient index of FGM | = ------ x
K Winkler stiffness MPa v Poisson's ratio | -
" T Non dimensional time | ---—---
K Foundation constant KN _ =
s a(n) Flexural stiffness GPa.m
(k Lk .C ) Dimensionless viscoelastic | ----- p Vastaio | o=
foundation
L Length of pipe m 2 Natural frequency Rad/s
m, The mass density for fluid Kg/m?
m Effective mass of pipe Kg/m? Reference
p
(n_s) Normal coordinate system | —— [1] Eslami, G., Malgki, V A, & R_ezaee, M. (_2016). Eff_ect
of open crack on vibration behavior of a fluid-conveying
R R Inner and the outer radii m pipe embeddeq in a visco-elastic medium. Latin American
i1 Journal of Solids and Structures, 13(1), 136-154.
Kinetic energy for fluid of N.m?/s? . . N
T, gy- [2] Chellapilla, K. R., & Simha, H. S. (2008). Vibrations
FGM pipe of fluid-conveying pipes resting on two-parameter
T Kinetic energy for pipe of FGM | N.m¥s? | foundation. Open Acoustics Journal, 1, 24-33.
p
Pipe [3] Tornabene, F., Marzani, A., Viola, E., & Elishakoff, I.
t Time sec (2010). Critical flow speeds of pipes conveying fluid using
Virtual work of Kinefic energy N/ the generalized differential quadrature method. Advances
oT ' in Theoretical and Applied Mechanics, 3(3), 121-138.
U strain energy of FGM N.m?/s?
s [4] Lu, P., & Sheng, H. (2012). Exact eigen-relations of
U Dimensionless of flow velocity | - cla_mped-clamped and simply suppo_rted pipes conveying
fluids. International Journal of Applied Mechanics, 4(03),
Transverse displacements m 1250035.
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