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Abstract  

  

Although wavelets are powerful as a tool in image processing it has three serious drawbacks: shift sensitivity, poor 

directionality and lack of phase information. Wavelets suitable for dealing with objects with point singularities; it can 

only capture limited directional information due to its poor orientation selectivity. Through decomposing the image into a 

series of high-pass and low-pass filter bands, the wavelet transform extracts directional information that capture vertical, 

horizontal, and diagonal activity. However, in noisy images, these three linear directions are limiting and might not 

capture enough directional information, like medical CT scans, which do not have strong vertical, horizontal, or diagonal 

directional elements.  

Ridgelet transform improves Multiresolution Analysis MRA segmentation; however, they capture structural information 

of an image based on multiple radial directions in the frequency domain. Line singularities in ridgelet transform provides 

better edge detection than its wavelet counterpart. One limitation to use ridgelet in image segmentation is that ridgelet is 

most effective in detecting linear radial structures, which are not dominant in images. The curvelet transform is a recent 

extension of ridgelet transform that overcome ridgelet weaknesses. Curvelet is proven to be particularly effective at 

detecting image activity along curves instead of radial directions which are the most comprising objects of images. 

However, the fact that at sufficiently fine scales, a curved edge is almost straight, and so to capture curved edges, one 

ought to be able to deploy ridgelets in a localized manner, at sufficiently fine scales. 

In this paper, a new method is used combining the Window Shrink threshold and Bayes Shrink threshold based on 

Curvelet transform to enhance removing Additive Weight Gaussian Noise AWGN noise from image. It has better PSNR 

than the traditional Curvelet that uses each threshold alone, and the images gotten by this method is better and 

outperform that of the traditional curvelet and wavelet methods and the results reported here are promising. 
 

Keywords: Image denoising, curvelet transform, wavelet transform, ridgelet transform, Peak signal to noise ration PSNR, 

Mean square error MSE. 

 

 

1. Introduction 

 

An image is often corrupted by noise in its acquisition 

or transmission. The goal of denoising is to remove the 

noise while retaining as much as possible the important 

image features [1]. Traditionally, this is achieved by linear 

processing such as Wiener filtering or Edge preserving 

smoothing algorithm, however, new methods uses non-

linear techniques like wavelet, ridgelet, and curvelet 

perform much better than the liner one [2, 3, 4]. In [2] they 

proved mathematically that with optimal choice of 

threshold in wavelet transform, near-optimal properties 

can be reconstructed from the signal and with better rate of 

convergence than linear techniques.  

     The success of wavelets is mainly due to the good 

performance for piecewise smooth functions in one 

dimension. Unfortunately, such is not the case in two 

dimensions. In essence, wavelets are good at catching 

point singularities, but two-dimensional piecewise smooth 

signals resembling images have one-dimensional 

singularities. i.e. smooth regions are separated by edges, 

and while edges are discontinuous across, they are 

typically smooth curves. Intuitively, wavelets in two 

dimensions are obtained by a tensor-product of one 

dimensional wavelets and they are thus good at isolating 

the discontinuity across an edge, but will not see the 

smoothness along the edge [5].  

To overcome the weakness of wavelets in higher 

dimensions, Candès and Donoho [2, 7] recently pioneered 

a new system of representations named ridgelets which 

deal effectively with line singularities in 2-D. "The idea is 

to map a line singularity into a point singularity using the 

Radon transform. Then, the wavelet transform can be used 

to effectively handle the point singularity in the Radon 

domain". However, since most of the images are carved in 

nature, a modification of the ridgelet is proposed by 

Candès and Donoho [2], the curvelet which deals with 

image activity along curves instead of radial directions 

which are the most comprising objects of images. Since a 

curved edge is almost straight when dealing with it in fine 

scale, A resent modification is to use curve let then 

subdivided it into small block, each block can be assumed 

linear and hence applying ridgelet on it [6]. The proposed 

method is based on improving the threshold of curvelet 

transform and hence increasing the PSNR in image 

denoising.  
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2. Wavelet, Ridgelet, and Curvelet Transforms 

 

2.1 Wavelet Transform 

 

During the last decade, a wide range of applications, 

including numerical analysis, image/video processing, and 

telecommunication has been recognized wavelet transform 

as a powerful tool [6]. "The advantage of wavelet is that 

wavelet performs an MRA of a signal with localization in 

both time and frequency" [1, 11]. In addition to this, fewer 

wavelet basis vectors is required in the wavelet domain 

than sine cosine basis vectors to achieve a comparable 

approximation when functions with discontinuities and 

functions with sharp spikes is available. Discrete wavelet 

transform (DWT) can be implemented as a set of high-

pass and low-pass filter banks. In standard wavelet 

decomposition, the output from the low-pass filter can be 

then decomposed further, with the process continuing 

recursively in this manner. According to [5], DWT can be 

mathematically expressed by: 

𝑎𝑗(𝑛) = ∑ 𝑙(𝑖) .  𝑎𝑗−1(2𝑛 − 𝑖),    0 ≤ 𝑛 < 𝑁𝑗
𝐿−1
𝑖=0                                                                                                                                        

𝑑𝑗(𝑛) = ∑ ℎ(𝑖) .  𝑑𝑗−1(2𝑛 − 𝑖),   0 ≤ 𝑛 < 𝑁𝑗
𝐿−1
𝑖=0            (1) 

While l(i) and h(i) represent the coefficients of low-pass 

and high-pass filters, respectively, the coefficients a
j
(n) 

and d
j
(n) refer to approximation and detailed components 

in the signal at decomposition level j, respectively.  

DWT decomposes the signal into a set of resolution 

related views. At each scale j, the wavelet decomposition 

of an image creates a set of coefficient values wj with an 

overall mean of zero. wj contains the same number of 

voxels as the original image. 

For images, 1D-DWT can be readily extended into 2D. 

Either in standard 2D wavelet decomposition; where the 

image rows are fully decomposed, with the output being 

fully decomposed column wise or in nonstandard wavelet 

decomposition; where all the rows are decomposed by one 

decomposition level followed by one decomposition level 

of the columns, figure 1 illustrates the filter structure of 

2D-DWT. 

Depending on filter coefficients and the number of those 

coefficients, wavelet uses a set of filters to decompose 

images. Haar wavelet filter (HWF) is the most popular 

wavelet filter which takes the averages and differences 

from the low- and high-pass filters, respectively [8]. 

Figure 2 illustrates an example of applying 2D-DWT 

using HWF on an image for 2 levels of decompositions. 

 

 
 

Fig.1 DWT Filter Structure 

 

 

 
 

Fig. 2: 2D-DWT, Original image (a), first decomposition 

level (b), second decomposition level 

 

2.2 Ridgelet Transform 

 

In 1998, Donoho introduced the ridgelet transform [2] 

"continuous ridgelet transform (CRT) can be defined from 

a 1D wavelet function oriented at constant lines and radial 

directions". Ridgelet transform [3, 11, 17] has superior 

performance over wavelets. While wavelets very 

successful in applications like denoising of images 

containing zero dimensional or point singularities; it do 

not isolate the smoothness along edges that occurs in 

images, and thus more appropriate for the reconstruction 

of sharp point singularities than lines or edges. These 

shortcomings of wavelet are well addressed by the ridgelet 

transform, generally speaking, wavelets detect objects 

with point singularities, while ridgelets are able to 

represent objects with line singularities. 

"The finite ridgelet transform (FRIT) computed in two 

steps: a calculation of discrete radon transform and an 

application of a wavelet transform. The finite radon 

transform (FRAT) is computed in two steps: a calculation 

of 2D Fast Fourier Transform (FFT) for the image and an 

application of a 1D inverse fast Fourier transform (IFFT) 

on each of the radial directions of the radon projection" [3, 

5]. 

Applying FRAT on image means setting of projections 

of the image taken at different angles to map the image 

space to projection space. For discrete images, a projection 

is computed by summation of all data points that lie within 

specified unit-width strips; those lines are defined in a 

finite geometry [5]. Depending on [5], FRAT of a real 

function on the finite grid ZP
2 is defined in 

rk[l] = FRATf(k, l) =
1

√P
∑ f(i, j)(i,j)∈L(k,l)                              

(2) 

Here, L (k, l) denotes the set op points that make up a line 

on the lattice ZP
2 as in 

L(k, l) = {(i, j) ∶ j =  ki + l(mod P), i ∈ ZP},   0 ≤ k < P, 
L(P, l) = {(l, j) ∶ j ∈ ZP}.                                                           
(3) 

To compute the K
th

 radon projection (the K
th

 row in the 

array), all pixels of the original image need to be passed 

once and use P histogrammers: one for every pixel in the 

row. At the end, all P histogrammed values are divided by 

K to get the average values. Once the wavelet and radon 

transforms have been implemented, the ridgelet transform 

is straightforward. Each output of the radon projection is 

simply passed through the wavelet transform before it 
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reaches the output multiplier. As shown in Figure 3, since 

FRAT maps a line singularity into point singularity, FRAT 

used as a basic building block of ridgelet, and the wavelet 

transform has used to effectively detect and segment the 

point singularity in radon domain [7]. 

Continuous ridgelet transform is similar to the 

continuous wavelet transform except that point parameters 

(x, y) in the Cartesian grid (Figure 4(a)) which perform 

pixels in the image or an entry in a 2D matrix are now 

replaced by line parameters (β, θ), where β is the intercept 

and θ is the angle. Figure 4(b) illustrates the radial grid in 

ridgelet transform; however, straight lines evaluate the 

image in the frequency domain. 

Using ridgelet transformation on images was not 

promising, since most images comprised from curves 

which are still not singularity points after applying radon 

transform, Ridgelet transform can be used in other 

applications, where images contain edges and straight 

lines. Curvelet transform has been introduced to solve this 

problem; it deals with higher singularities compared to 

wavelet and ridgelet transforms. 

 

 
 

Fig.3: RFIT block diagram 

 

 
Fig.4: Wavelet and Ridgelet Parameters 

 

2.3 Curvelet Transform 

The curvelet transform was first introduced in 2000 by 

Cand´es and Donoho [2, 7], which used a complex series 

of steps involving the ridgelet analysis of the radon 

transform of an image with very slow performance; a 

newer method was developed that easier to use and 

understand. The use of ridgelet transform as a 

preprocessing step of curvelet was discarded, thus 

reducing the amount of redundancy in the transform and 

increasing the speed considerably. This improved version 

of curvelet transform was known as Fast Discrete Curvelet 

Transform (FDCT). "Curvelet aims to deal with interesting 

phenomena occurring along curved edges in a 2D image. 

As illustrated in figure 5, curvelet needs fewer coefficients 

for representation, and the edge produced from curvelet is 

smoother than wavelet edge"[6,18] 

 

 
Fig.5:  An approximating comparison between wavelet (a) 

and curvelet (b) 

While the ridgelet transform steps can be summarized in 

figure 6, figure 7 shows the curvelet steps, from which one 

can understand the main differences between the two 

transforms, and how the first version of curvelet transform 

is built based on ridgelet transform. Figure 8 from the 

other hand shows how the image's curves is subdivided 

into small parts each of them treated as if straight line with 

significant and insignificant coefficients as seen in figure 9     

 

 
Fig.6:  DRT flowchart. Each of the 2n radial lines in the 

Fourier domain is processed separately. The 1-D IFFT is 

calculated along each radial line followed by a 1-D 

nonorthogonal wavelet transform. In practice, the one-

dimensional wavelet coefficients are directly calculated in 

the Fourier space 

 

 
 

Fig.7:  First Generation Discrete Curvelet Transform 

(DCTG1) flowchart. The figure illustrates the 

decomposition of the original image into sub-bands 

followed by the spatial partitioning of each sub-band. The 

ridgelet transform is then applied to each block 
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(a)                       (b)                         (c) 

 
Figure 8:  Local ridgelet transform on bandpass filtered 

image. At fine scales, curved edges are almost straight 

lines 

 

 
 

Figure 9: curvelet types.  Type A The curvelet coefficient 

magnitude will be zero (a). Type B The curvelet 

coefficient magnitude will be close to zero (b).  Type C  

The curvelet coefficient magnitude will be much larger 

than zero (c). 

 

2.3.1 Continuous – time curvelet Transform 

 

This transform works in two dimensions with spatial 

variable x, frequency domain variable ω, and the 

frequency-domain polar coordinates r and θ. It can be 

defined by a pair of windows, radial window {W (r)}, and 

angular window {V (t)}. As illustrated in [7], these 

windows will always obey the admissibility conditions. 

 

∑ 𝑊2(2𝑗𝑟) = 1,       𝑟 ∈ (
3

4
,
3

2
) ,

∞

𝑗=−∞

 

 

∑ 𝑉2(𝑡 − 𝑙) = 1     𝑡 ∈ (−
1

2
,
1

2
)

∞

𝑗=−∞

                                 (4) 

 

A polar “wedge” represented by Uj is supported by the 

radial window {W (r)} and angular window {V (r)}. 

Equation (5) defines Uj in the Fourier domain 

 

𝑈𝑗(𝑟, 𝜃)

= 2−
3𝑗
4 𝑊(2−𝑗𝑟)𝑉 (

2[𝑗/2]𝜃

2𝜋
)                              (5) 

 

Equation (6) define the curvelet transform as a function of 

{x=(x1, x2)} at scale 2
−j

, orientation θl and position xk(j, l), 

where Rθ is the rotation in radians. Figure 10 illustrates the 

induced tiling of the frequency plane and the spatial 

Cartesian grid associated with a given scale and 

orientation, and shaded area represents the polar wedge by 

Uj 

 

𝜑𝑗,𝑙,𝑘(𝑥) =  𝜑𝑗 (𝑅𝜃𝑙
(𝑥 − 𝑥𝑘

(𝑗,𝑙)
))                                     (6) 

 

 
 

Fig.10:  Curvelet tiling of space and frequency.The 

induced tiling of the frequency plane (a).The spatial 

Cartesian grid associated with a given scale and 

orientation (b) 

2.3.2 Fast Discrete Curvelet Transform 

 

Curvelet transform implementation based on Wrapping 

of Fourier samples takes an image as an input in the  form 

of a Cartesian array f [m, n], where 0 ≤ m < M, 0 ≤ n < N 

where M and N are the dimensions of the array. As 

illustrated in equation (7), the outputs will be a collection 

of curvelet coefficients c
D
( j, l, k1k2) indexed by a scale j, 

an orientation l and spatial location parameters k1 and k2 

[5]. 

 

𝑐𝐷(𝑗, 𝑙, 𝑘1𝑘2) =  ∑ 𝑓[𝑚, 𝑛]𝜑𝑗,𝑙,𝑘1𝑘2

𝐷 [𝑚, 𝑛]

0≤𝑚<𝑀

0≤𝑛<𝑁

             (7) 

 

Each 𝜑𝑗,𝑙,𝑘1𝑘2

𝐷  is a digital curvelet waveform, superscript D 

stands for “digital.” "These approach implementations are 

the effective parabolic scaling law on the subbands in the 

frequency domain to capture curved edges within an 

image in more effective way" [5]. Figure 11 illustrates the 

whole image represented in spectral domain in the form of 

rectangular frequency tiling by combining all frequency 

responses of curvelets at different scales and orientations. 

From figure 11 it can be seen that curvelets are needle like 

elements at higher scale, also the curvelet becomes finer 

and smaller in the spatial domain and more sensitivity to 

curved edges as the resolution level is increased, thus 

effectively capture the curves in an image, and curved 

singularities can be well-approximated with fewer 

coefficients [7]. 

curvelet transform is usually implemented in the 

frequency domain in order to achieve a higher level of 

efficiency. This means that a 2D FFT is applied to the 

image. For each scale and orientation, a product of Ujl 

“wedge” is obtained; the result is then wrapped around the 

origin, and 2D IFFT is then applied resulting in discrete 

curvelet coefficients. The discrete curvelet transform can 

be described as: 

 

Curvelet transform=IFFT[FFT (Curvelet)×FFT(Image)] 

(8) 
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Fig.11:  5-level curvelet digital tiling of an image 

 

The following are the steps of applying wrapping based 

FDCT algorithm [12]. 

1- Apply the 2D FFT to an image to obtain Fourier 

samples 

 

       𝑓[𝑚, 𝑛] ,        
𝑛

2
≤ 𝑚, 𝑛 <

𝑛

2
                                           (9) 

 

2-  For each scale j and angle l, form the product 

 

        𝑈𝑗,𝑙[𝑚, 𝑛]𝑓[𝑚, 𝑛]                                                          (10) 

 
3- Wrap this product around the origin and obtain 

 

       𝑓𝑗,𝑙[𝑚, 𝑛] = 𝑊(�̃�𝑗,𝑙𝑓)[𝑚, 𝑛],                                       (11) 

 

where the range for m, n, and θ is now 0 ≤ m < 2
j
, 0 ≤ n < 

2
j/2

, and −π/4 ≤ θ < π/4 

4-  Apply IFFT to each 𝑓𝑗,𝑙, hence collecting the discrete 

coefficients 𝑐𝐷(𝑗, 𝑙, 𝑘1𝑘2). 

 

Curvelet transform is a multiscale transform such as 

wavelet, with frame elements indexed by scale and 

location parameters. Wavelets are only suitable for objects 

with point singularities, Ridgelets are only suitable for 

objects with line singularities, while curvelets have 

directional parameters and its pyramid contains elements 

with a very high degree of directional specificity and 

obeying a special scaling law, where the length and the 

width of frame elements are linked using: 

       

Width ≈ length
2
                                                                       

(12) 

 

Discrete curvelet transform in the spectral domain utilizes 

the advantages of FFT. During FFT, both image and 

curvelet at a given scale and orientation are transformed 

into the Fourier domain. The convolution of the curvelet 

with the image in the spatial domain then becomes their 

product in the Fourier domain. At the end of this 

computation process, a set of curvelet coefficients are 

obtained by applying IFFT to the spectral product. This set 

contains curvelet coefficients in ascending order of the 

scales and orientations. 

 

3. Proposed Algorithm 

 

  One of most critical issues in curvelet, wavelet, ridgelet 

and many other transforms is how to define the optimal 

threshold value that maximize the probability of 

reconstructing the original signal/image[1, 4, 10, 13, 15]. 

This section describes the proposed image denoising 

algorithm, which achieves near optimal soft thresholding 

in the curvelet domain for recovering original signal from 

the noisy one. The algorithm merges between two 

thresholding techniques used by curvelet: 

 

i.   Window Shrink Method [14] 

 

In this method the steps of finding the threshold 

value can be summarized by the following steps: 

 

1) Set di,j is the parameter which is from curvelet 

transformed noise image; choose a di,j centered 

window of n×n as the processing subject. 

 

 

 
 

Fig.12:  choosing the processing curvelet coefficient 

centered in the n*n window  

 

2) The sum of all the parameter’s square in the n×n 

window is calculated 

 

 𝑆𝑖,𝑗
2 =  ∑     ∑    𝑑𝑝,𝑞

2𝑗+
(𝑛−1)

2

𝑞=𝑗−
(𝑛−1)

2

𝑖+
(𝑛−1)

2

𝑝=𝑖−
(𝑛−1)

2

               (13) 

 

3) Set Symbolic function: 

 

𝜂 =  √2𝜎2𝑙𝑜𝑔𝑛2                                                     (14) 

 

4) σ is the variance of Gaussian white noise in the 

image, then shrinking processing parameter is 

 

𝛼𝑖,𝑗 = 𝐼 (1 −
𝜂2

𝑆𝑖,𝑗
2 )                                               (15) 

 

𝐼(𝑋) =  {
𝑋,                𝑋 ≥ 0
0,                 𝑋 < 0

                                (16) 

 

5) Then the thresholded parameter can be calculated as 

 

𝑑𝑖,𝑗
′ =  𝑑𝑖,𝑗 ∗  𝛼𝑖,𝑗                                                         

(17) 

 

ii. Bayes Shrink method [16] 

 

  In this method the steps of finding the threshold 

value can be summarized by the following steps: 

 

3X 3 Window Shrink 

The curvelet coefficients  

to be thresholded 
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(a)                             (b)                             (c) 

(d)                              (e)                                (f) 

 Original Image     Noisyimage with σ=20  Traditional Curvelet  Improved Curvelet 

Original Image      Noisyimage with σ=60  Traditional Curvelet  Improved Curvelet 

1) In this method 𝜎𝐷
2 is the variance of an image 

containing noise, σ
2
 is the variance of noise, and  𝜎𝑋

2  

is the original image’s variance. 

 

2) Now, noise variance is 

 

𝜎 =  
𝑀𝑒𝑑𝑖𝑎𝑛 |𝑑𝑖,𝑗|

0.6745
                                                                

(18) 

 

𝜎𝐷
2 =  

1

𝑀𝑁
∑ 𝑑𝑖,𝑗

2
𝑖,𝑗                                                          

(19) 

 

3) The variance of original image is calculated by 

 

𝜎𝑋 = √|𝜎𝐷
2 − 𝜎2|                                                           

(20) 

 

4) Setting Threshold is 
𝜎2

𝜎𝑋
2   then begin the processing 

of removing noise 

 

iii. Combination of Window shrink and Bayes shrink 

(the proposed method) 

 

   In this proposed method the steps of finding the 

threshold value (improved threshold) can be 

summarized by the following steps: 

 

1) Estimating the variance of the original picture 𝜎𝑋
2 

using Bayes shrink method (equations 18-20). 

 

2) Calculating η using 𝜎𝑋
2  instead of  σ

2
, so that 

equation (14) becomes: 

 

𝜂 =  √2𝜎𝑋
2𝑙𝑜𝑔𝑛2                                                  (21) 

 

3) Using equation (15) to find shrink parameter αi,j  

 

4) Using equations (16-17) to filter out the noise 

coefficient. 

 

4. Results 

 

First of all a MATLAB computer program is written 

for wavelet, ridgelet and traditional curvelet to apply them 

on noisy image with σ = 20 in order to compare between 

different transforms efficiency in denoising, the results are 

shown in figure 13. It is clear from the results that the 

traditional curvelet transform has a superior efficiency 

over the other transforms and one can see that the curves 

details of the image is better reconstructed using curvelet 

transform. Table 1 shows the values of PSNR, MSE of 

these transforms. After that a MATLAB program is 

written to compare between traditional curvelet transform 

TCT and improved curvelet transform ICT in terms of 

their efficiency in image denoising for different values of 

noise standard deviation, the results are shown in figure 

14, 15 and in table 2, where it seems very clear that the 

new thresholding method boost the PSNR asymptotically.     

 

 
 

Fig.13: (a) Noisy free image (b) noisy image with σ = 20. 

Filtered images using:(c) decimated wavelet transform (d) 

undecimated wavelet transform (e) ridgelet transform and 

(f) curvelet transform 

 

Table 1:  comparison between different transforms for 

different values of noise standard deviation σ 
 

σ of 

noisy 

image 

Noisy 

image 

PSNR 

Decimated 

wavelet 

Undecimated 

wavelet 

Ridgelet 

transform 

Traditional 

Curvelet 

5 34.15 35.3 37.06 37.19 37.9 

10 28.13 31.4 33 33.13 34.554 

20 22.1 25.6 29.21 29.32 31.47 

30 18.6 22.74 26.9 27.03 29.95 

40 16.09 22.05 25.62 25.8 27.645 

50 14.15 21.8 24.47 24.65 27.645 

60 12.57 21.23 23.57 23.74 26.966 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.14: Comparison between traditional curvelet and 

improved curvelet thresholding 
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Fig.15:  PSNR of Traditional curvelet versus PSNR of 

Improved Curvelet thresholding for different values of σ 

 

 

 

Conclusions 

 

 In this paper a method was introduced to enhance the 

image denoising through using improved curvelet 

thresholding. To overcome the disadvantages of the 

wavelet transform along the curves in the images the 

curvelet transform is used and it gives higher PSNR. A 

new method of combination of the Window Shrink and 

Bayes Shrink based on Curvelet transform is used to 

remove AWGN noise from image. It has better PSNR. So 

the image we got by this method is better than that of the 

traditional curvelet methods and hence better than wavelet 

and ridgelet methods. There is no general transform that 

can be considered as the best one for all kinds of images, 

the success of wavelets is mainly due to the good 

performance for piecewise smooth functions in one 

dimension the wavelet is better in point singularity and 

gives no information for the direction and orientation, the 

ridgelet from the other hand is better than wavelet in line 

singularity, and since most of the images are curved in 

nature; the curvelet transform is better in reconstructing 

curved images, however it is important to mention that the 

time consumed using curvelet transform (traditional and 

improved) is larger than that of wavelet and ridgelet 

transform.  
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