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Abstract 

  

This paper discusses the fabrication techniques and the fabrication technique  of single electron transistor (SET). The 

SET differs from the conventional CMOS in the sense that it has the ability to control an electron movement so that 

single electron can be transport at a time, meaning that one by one electron along the channel. This is due to its stunning 

technique that has the ability of controlling the electron tunneling. The SET represents a promising technology as it offers 

several unique advantages, example, small size, high operating frequency, and low power consumption. Several SET of 

fabrication technologies were reviewed in this paper, including quantum dot, carbon nanotube, graphene, and zinc oxide.  
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1. Introduction 

 

Recently ultra-power conception and fast devices became 

a demand for the new applications, particularly for the 

portable devices such as cellphones, video games, and 

telecommunication  [1] . This requires thinking seriously 

about advanced architectural designs in terms of materials 

and fabrication technologies.   

Since transistor is the building block of any electronic 

device, working on growing up its characteristics specially 

the frequency bandwidth and power conception, has been 

the key point for the researchers since the 1980s [2].  

Based on Moor’s law [3], the number of transistors 

integrated into a semiconductor circuit doubles every 18 

months. It seems that Moor’s low has become to represent 

a limitless capacity for the huge growth in electronics. 

Since the performance of the transistor is elevated with the 

shrinking of its dimensions, a fascinating transistor 

approach called single electron transistor (SET) has been 

designed and fabricated [4]. The architecture of the SET 

transistor is different from the conventional CMOS 

transistor as it contains one- or two-dimensional 

nanomaterial. The only way to characterize such nanoscale 

devices is by the aid of quantum mechanical effects. The 

SET has large potential for low-power applications [5]. In 

this device, the conductance fluctuates periodically due to 

the Coulomb blockade effect (discussed in the next 

section). However, the missing of repeatability of SET is a 

challenge due to the difficulty of device fabrication 

preciously in atomic level. And this leads to complexity or 

even impossibility of construction of integrated circuits. 

SET devices can be divided based on technique   into four 

based on the fabrication and nanomaterials, SET based 

nanodot, SET based graphene nanoribbon, SET based on 

ZnO nanorods and SET based on CNTs. The above 

technologies have covered in the following sections 

individually. 

 

2. SET constructing based on quantum dot 

 

This SET is constructed by making drain and source and 

an island, the quantum dot, with a diameter 1<d<10 nm, is 

lies between them [6-9]. The dot is separated by a dialectic 

layers. Similar to the conventional transistors, SET has a 

gate to maintain the flowing of electrons (Figure 1).   

 

 

 

(a) 

(b) 
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Fig. 1. (a) SET skematic (b) equivelent circuit of the SET 

(c) skematic of the tunneling in SET. 

As in the schematic of  Figure 1, there is just one way for 

an electron to travel from source to drain is by travelling 

through the dielectric layer. Since the electron is confined 

within a small volume then energy band is quantized. The 

value of gate voltage decides the  number of electrons 

flowing through the island. Furthermore, the coulomb 

blockage causes blocking in the current whenever  a single 

electron is escape from source to the dot  [10, 11]. When 

the electron arrives at the drain, the energy band decreased 

and another electron jumps to the island. Hence, with 

applied gate voltage the device reveals conductance 

oscillations. This make the SET a candidate for interesting 

applications such as, very high sensitive sensors [12-16], 

logic gates and memories [15, 16]. 

The important  idea to mention is that the coulomb gap 

voltage, which is equal to, 

 e
2
/2Cs+d   .. .…………………………………………….(1) 

 where,  Cs+d is the source and drain capacitance, must be 

less than the thermal energy (KT). Moreover, the 

resistance of the channel must be greater than 2h/e
2
.  Do 

not taking into account these limitations could probably 

result in a tunneling on the SET even with no gate voltage. 

3- Fabrication technique of  SET by Carbon nanotube 

(CNT) 

The excellent electronic properties and nano-size 

dimensions make CNT a nominee for SET constructing 

[17-21].  The remarkable property  in the CNTs is that the 

mobility of charge carriers are very high compare to 

conventional CMOS [22] and  also the electrons flow on 

the surface of  it. However, it is hard to control the flowing 

of electrons.  

BJ Villis, et al [23] suggested a method to detect the single 

electron transport. The structure of the circuit includes 

CNT with gold nanoparticles as islands. The transfer of 

electrons were detected by measuring the conductance of 

the CNT during applying voltage to the gate. The required 

energy to add an electron to the particle is   

EC= e
2
/(Ctube-Au +CAu-gate) [24] ……………………….. (2) 

 Figure (2) DISPLAYS s the architecture and the 

equivalent circuit of the  CNT –SET. 

 

Fig. 2.  (a) Structure of the SET carbon nanotube   (b) The 

electrical equivelent circuit.  

The resistance between the particle and the tube can be 

calculated by assuming the case  

ΔE≈KT≈ EC,  ………………………………………....   (3) 

Where ΔE is the energy difference. Then, the time 

constant is, 

τ =RCtube-Au  …………………………………………...  (4) 

Since  

Ctube-Au≈ e
2
/EC   ……. ………………………………… (5) 

 Then, 

 τ=Re
2
/EC      …………………………………………… (6) 

 This leads to, 

 R=τEC/e
2 
  ……………………………………………  (7) 

At a given value of τ and temperature, the charged 

electrons for each discrete peak position shift can be 

determined based on the model depicted in Figure 2. Also, 

 N=(ΔVPΔVCCCG )/ e(ΔVC-VP). ……………………..  (8) 

Where VP is the peak voltage of charge electrons and ΔVC 

charge voltage through the gate voltage and the CCG is the 

capacitance between CNT and the Au dot.  [25, 26]. 

4. Single-electron transistor with multiple islands 

The condition for displaying the effect of one-electron is 

that the energy of the operating temperature must be less 

(a) 

(b) 

(c) 
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than the energy of the column island. Therefore, for the 

SET to be used at room temperature, the island size must 

be in an enough small size around 1- 5 nm [25, 27, 28].  

However, it is a challenge to construct a reliable small 

size device since such size required a sophisticated 

fabrication technology. However, to increase the 

operating temperature, Ceff should be increased, which 

leads to increase the charge energy (e2/(2CΣ ). Figure ( 

3) shows the architecture of the SET based on multi-

island.  

 
Fig. 3.  Schematic of the SET based multiple island. 

 

5- SET based on Graphene 

a- Graphene quantum dot (GOD) 

Graphene is 2D carbon material. It was prepared first by 

Andre Geim and he received Nobel prize for his work 

graphene [29]. Graphene has a lot of interesting properties, 

not only electronic [30, 31] but also mechanical [32, 33], 

thermal properties [34, 35], and optical properties [36, 37]. 

This makes it promising for future micro- and nano- 

devices.  

Graphene quantum dot is a 0D carbon based material. It is 

a nano piece dimension of the graphene layer  [38, 39].  

Etching graphene sheet into quantum size will definitely 

change its properties because of sharp edges  that usually 

appears after etching, in addition to electron confinement 

phenomenon [40] . Several  techniques have been used to 

achieve quantum graphene size , such as,  plasma etching 

[41], nanolithography [42],  and chemical exfoliation [43].   

The thickness of the graphene quantum dot is either single 

layer (0.34 nm) or few layers (~2 nm). Whereas the 

diameter of the quantum dots is around 1nm with a 

typically circular shape [44]. 

Graphene quantum dot is typically used in the sensing 

application particularly, in charge sensors  [45]. Plasma 

etching after e-beam lithography have been used in the 

constricting of the quantum dots [46]. Furthermore, the 

GODs have also used as a humidity detector [47]. 

b- SET-based graphene double quantum dots 

 

Using multi- island [48] in the structure of the SET is 

another technique to overcome the problem of coulomb 

blockade. It is reported that the number of quantum 

dots significantly affects the probability of electron 

tunneling [45].   

Graphene has been used in the fabrication of multi-

island SET. This feature reduces the gap  conductance 

and raises the speed of electron transfer in SET.  

 

6- Single electron transistor based on Zinc oxide                                                        

Zinc oxide (ZnO) nanrodes  have a lot of  interest 

properties due to its large surface area and wide bandgap 

(∼3.4eV) [49]. It has been used in the design of several 

nano devices such as photo detector [50], high efficiency 

solar cell [51] and piezoelectric sensors [52]. The 

properties of the ZnO can also be modified to make it 

either n-type or p-type, depending on the dopants [53-55] .  

SET based on ZnO belt [56] has been fabricated  and 

tested at  4.2 
0
K. A few millimeter bias voltage was used 

to achieve the coulomb blockage. About 10 meV charging 

energy was measured that means the confine quantum dots 

exist at a radius of ~18nm. Figure (4) displays  the 

skematic of the SET based on ZnO nano rode. 

 

Fig. 4.  Architecture of the SET based on ZnO rod. 

Conclusions 

This brief review summarized the fabrication techniques 

and materials that have been used in the design of the 

SET.  It seems that the road towards the commercial SET 

is still long. Dealing with quantum size devices requires a 

particular fabrication instruments and technologies to 

transfer the above mentioned techniques to the market. 

However, promising attempts has been displayed recently, 

particularly in the direction of using zero, single, and two 

dimensions nanomaterials. In addition to the serious 

attempts to understand the theoretical basis and properties 

of the SET.  
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