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Abstract 

  

The Matrix converter technology draws significant interest in motor drive applications. This is due to the advantages it 

can offer, like providing high quality input and output currents and compact structure. However, some unsolved problems 

strict its industrial use, one of these main problems is the stability of operation caused by the voltage distortion and/or the 

load torque disturbances. Using steady state small signal analysis, the matrix converter drive system driving an induction 

motor and equipped with an input filter will be presented in this paper, the stability of the system will be examined and 

the factors that influence it will be defined. A method of investigating the complex system with multiple-inputs multiple-

outputs in simple fashion will be presented. Matlab/Simulink computer software is used to obtain simulation results to 

verify the mathematical model. The analysis will be carried out using transfer function analysis and the migration of 

eigenvalues on the simulation results. Where it has noticed that the stability is significantly affected by the system 

parameters, while the damping resistor of the filter affect the system stability directly. 
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1. Introduction 

 

Matrix converters are capable of providing sinusoidal 

input and output currents, more compact structure, 

bidirectional power flow and wide range of input power 

factor control. Thus, matrix converters draw substantial 

consideration amongst researchers as an alternative for 

Rectifier/Inverter types of converters mainly because it 

doesn’t have DC link energy storage elements, which are 

often bulky. Modulation techniques and technology 

overview have been presented and summarized and 

discussed as well as many control strategies. Input filter is 

an important stage of matrix converters design, as it 

provides better input current quality and decreases the 

input voltage distortion. However, using a fast closed loop 

control as the ones used for controlled rectifiers or direct 

torque control presents instability in operation. Moreover, 

the absence of the intermediary energy storage passive 

element, and the presence of the input filter drive the 

matrix converters to unstable operation [1]–[3]. 

Matrix converters allow wide range of controlling the 

output power, this is because the phase angle between the 

space vectors of input voltage and current. This can be 

used to outline many modulation strategies of input 

current, and hence improve the input current quality as 

well as, providing sinusoidal output voltages. One of the 

most basic modulation strategies is constructed on the 

detection of zero crossing of input voltage, this helps to 

synchronize the input current phase and generate 

sinusoidal waveforms. Yet, the presence of voltage 

disturbances and the fact that there is no perfect supply 

(i.e. balance sinusoidal and zero impedance) determines 

low order harmonics in input voltage. Methods of 

providing feed-forward compensation to calculate the duty 

cycles for balance voltages have been developed, still, the 

presence of input filter leads to instability especially when 

the maximum output power is exceeded. Matrix converter 

stability has been studied using small-signal and large-

signal analysis methods, and it has been found that the 

system stability and power limits are affected by the 

system parameters particularly the input filter. 

Furthermore, digital low pass filter has been developed to 

reduce the input voltage disturbances and increase the 

stability limits by providing reference frame. Also, it has 

been proven that cycle period delay presented by digital 

control can affect the power limit to some extent. System 

parameters have significant influence on stability 

operation, this has been proven using small signal analysis 

by filtering the magnitude and angle of input voltage space 

vector. Additionally, alongside with system parameters, 

the power losses in the converter system have been 

considered in to calculate the stability limits. Thereby, it 

can be concluded that system parameters, filter and supply 

impedances and power losses in matrix converters have 

supreme effect on stability of matrix converters, and it can 

be the corner stone of designing robust and reliable system 

[4]–[8]. 
 

In this paper, stability of matrix converters is a 

significant dilemma and it has been investigated for 

different types of applications, like aerospace, pumps, fans 

and a new motor drive method known as integrated matrix 

converter induction motor drive, in which the converter is 

accommodated inside the motor case. 

This paper is arranged in six sections; section 2: 

introduce an overview about matrix converter, which 

consists of fundamentals of operation and limitations, and 

then a brief demonstration of modulation techniques is 
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presented. Section 3: deals with modulation techniques 

with the aid of Matlab simulations. Section 4: stability 

theories will be presented, which can be used. Section 5: a 

dynamic model of the matrix converter system is derived 

and implemented in Matlab and several analysis 

techniques are used to evaluate the system in section 6. 

 

2. Matrix Converter 
 

The matrix converter is a potential alternative for other 

converter topologies due to its many benefits. As seen in 

Figure 1, it comprises of a configuration of [𝑛 × 𝑚] 

frames, where (𝑛) stands for the input phases source and 

(𝑚) for the output phases load (i.e. three phase AC source 

converted to three phase AC load). The output voltage can 

therefore be created by connecting any output terminal to 

any input one. Furthermore, unlike the well-known VSI 

converter (shown in Figure 2), the matrix converter lacks a 

DC link stage, making it more compact. Typically, the DC 

link capacitor or inductor takes up roughly 30 to 50 

percent of the converter's overall volume. Additionally, a 

matrix converter may produce sinusoidal input current and 

output voltage for any desired amplitude and frequency, as 

well as unity input power factor for any load state 

(inductive or capacitive), which can be accomplished 

utilizing certain modulation techniques. Additionally, due 

to the bidirectional switches, it has the capacity to 

regenerate current in both ways. [3], [5], [7], [9]–[11].  

The matrix converter is subject to a few limitations, 

though. Since it is often driven by a voltage source, the 

input phases must never be shorted. Second, because the 

load is often an inductive load, the output terminals should 

never be opened (i.e. induction machine). Additionally, 

harmonics produced by periodically switching the current 

on and off are frequently linked to matrix converters. 

These harmonics have an impact on the performance of 

the load and, more crucially, the quality of the input 

power. As a result, filters are crucial in the development of 

high performance. The power density and weight of power 

converters are also crucial factors. Additionally, while 

creating input filters for static power converters powered 

by AC, the following standards should be adhered to: 

 

 Performing the noise attenuation of the switching; 

 Minimizing the displacement angle the current and 

the voltage at the input; 

 Ensuring there is stability of the system. 

 

There are more variables related to price, voltage 

attenuation, system effectiveness, and the modification of 

the filter parameter. Therefore, matrix converters use 

passive devices to filter out the harmonics (i.e., lower 

converter losses), therefore in this scenario, the size, price, 

and overall converter losses have been compromised [1], 

[3], [7]–[9], [12]. 

 

 

 

 

 

 

 

Figure. 1 Simple diagram of the Matrix converter  

 

 

Figure. 2 Diagram of VSI back-to-back converter 

 

The rectifying stage and the inverting stage are 

typically found in conventional converter topologies' two 

power conversion stages, however there is just one in the 

matrix converter. This restricts the topology so that neither 

the input nor the output terminals may ever be short-

circuited or open-circuited. Figure 3's form serves as an 

illustration of the switching method. 

 
Figure. 3 Switching pattern general form [3] 

 

The relationship between the input and output voltage 

can be defined as follows: 

[

𝑉𝑎(𝑡)

𝑉𝑏(𝑡)

𝑉𝑐(𝑡)

] = [

𝑆𝐴𝑎(𝑡) 𝑆𝐵𝑎(𝑡) 𝑆𝐶𝑎(𝑡)

𝑆𝐴𝑏(𝑡) 𝑆𝐵𝑏(𝑡) 𝑆𝐶𝑏(𝑡)

𝑆𝐴𝑐(𝑡) 𝑆𝐵𝑐(𝑡) 𝑆𝐶𝑐(𝑡)

] ∗ [

𝑉𝐴(𝑡)

𝑉𝐵(𝑡)

𝑉𝐶(𝑡)
]        (1) 

 

where: 

𝑉0 = [

𝑉𝑎(𝑡)
𝑉𝑏(𝑡)

𝑉𝑐(𝑡)
] and 𝑉𝑖 = [

𝑉𝐴(𝑡)
𝑉𝐵(𝑡)

𝑉𝐶(𝑡)
] 

Hence; [Vo ] = [T] [Vi] 
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The transformation matrix [T] is known as 

“instantaneous transfer matrix” which can also be used for 

obtaining input currents in this form: 

𝐼𝑖 = [

𝑖𝑎(𝑡)
𝑖𝑏(𝑡)

𝑖𝑐(𝑡)
] and 𝐼𝑜 = [

𝑖𝐴(𝑡)
𝑖𝐵(𝑡)

𝑖𝐶(𝑡)
] 

[Ii ] = [T]
T
 [Io] 

Where: [T]
T
 is the transposed instantaneous transfer 

matrix. 

The output voltage can be created with any desired 

magnitude and switching frequency by changing the duty-

cycle of the bidirectional semiconductor switches at a high 

switching frequency. The instantaneous transfer matrix 

can be used to describe the duty cycle of each bidirectional 

switch as follows: 

𝑀(𝑡) = [

𝑚𝐴𝑎(𝑡) 𝑚𝐵𝑎(𝑡) 𝑚𝐶𝑎(𝑡)
𝑚𝐴𝑏(𝑡) 𝑚𝐵𝑏(𝑡) 𝑚𝐶𝑏(𝑡)

𝑚𝐴𝑐(𝑡) 𝑚𝐵𝑐(𝑡) 𝑚𝐶𝑐(𝑡)
]                              (2) 

Where:  𝑚𝑘𝑗  (𝑡) =  𝑡𝑘𝑗  /𝑇𝑠𝑒𝑞  

0 <  𝑚𝑘𝑗  <  1 𝑘 = {𝐴, 𝐵, 𝐶} 𝑗 = {𝑎, 𝑏, 𝑐} 

Hence: Vo(t) = M(t) Vi(t) and Ii(t)= M(t)
T
 Io(t) 

Figure 4 illustrates the output voltage (a) and current (b) 

waveforms of a matrix converter [4], [5], [7], [9]–[11], 

[13]–[17]. 

 

Figure. 4 Output voltage and input current waveforms of 

matrix converter 

 

3.Modulation Techniques 

Output voltages and input currents of a matrix 

converter can be represented as: 

𝑣𝑖 = 𝑉𝑖𝑚 [

cos(𝜔𝑖 𝑡)

cos(𝜔𝑖 𝑡 + 2𝜋
3⁄ )

cos(𝜔𝑖 𝑡 + 4𝜋
3⁄ )

]                                              (3) 

𝐼𝑜 = 𝐼𝑜𝑚 [

cos(𝜔𝑜 𝑡 + ∅𝑜)

cos(𝜔𝑜 𝑡 + ∅𝑜 + 2𝜋
3⁄ )

cos(𝜔𝑜 𝑡 + ∅𝑜 + 4𝜋
3⁄ )

]                                    (4) 

Then the modulation matrix can be found as: 

𝑉𝑜 = 𝑞𝑉𝑖𝑚 [

cos(𝜔𝑜 𝑡)

cos(𝜔𝑜 𝑡 + 2𝜋
3⁄ )

cos(𝜔𝑜 𝑡 + 4𝜋
3⁄ )

]                                           (5) 

𝐼𝑖 = 𝑞 cos(∅𝑜) 𝐼𝑜𝑚 [

cos(𝜔𝑖 𝑡 + ∅𝑖)

cos(𝜔𝑖 𝑡 + ∅𝑖 + 2𝜋
3⁄ )

cos(𝜔𝑖 𝑡 + ∅𝑖 + 4𝜋
3⁄ )

]                  (6) 

Where: 𝑆𝐴𝑗 + 𝑆𝐵𝑗 + 𝑆𝐶𝑗 = 1 𝑗 = {𝑎, 𝑏, 𝑐} 

And 𝑞: is the gain between input and output voltages. 

Hence the basic solutions are: 
𝑀1 =

1

3

[
 
 
 1 + 2𝑞 cos(𝜔𝑚 𝑡) 1 + 2𝑞 cos(𝜔𝑚 𝑡 − 2𝜋

3⁄ ) 1 + 2𝑞 cos(𝜔𝑚 𝑡 − 4𝜋
3⁄ )

1 + 2𝑞 cos(𝜔𝑚 𝑡 − 4𝜋
3⁄ ) 1 + 2𝑞 cos(𝜔𝑚 𝑡) 1 + 2𝑞 cos(𝜔𝑚 𝑡 − 2𝜋

3⁄ )

1 + 2𝑞 cos(𝜔𝑚 𝑡 − 2𝜋
3⁄ ) 1 + 2𝑞 cos(𝜔𝑚 𝑡 − 4𝜋

3⁄ ) 1 + 2𝑞 cos(𝜔𝑚 𝑡) ]
 
 
 

(7) 

Where 𝜔𝑚 = ( 𝜔𝑜 –  𝜔𝑖) which gives same displacement 

angle between input and output (i.e. 𝛷𝑖 =  𝛷𝑜). 
𝑀2 =

1

3

[
 
 
 1 + 2𝑞 cos(𝜔𝑚 𝑡) 1 + 2𝑞 cos(𝜔𝑚 𝑡 − 2𝜋

3⁄ ) 1 + 2𝑞 cos(𝜔𝑚 𝑡 − 4𝜋
3⁄ )

1 + 2𝑞 cos(𝜔𝑚 𝑡 − 2𝜋
3⁄ ) 1 + 2𝑞 cos(𝜔𝑚 𝑡 − 4𝜋

3⁄ ) 1 + 2𝑞 cos(𝜔𝑚 𝑡)

1 + 2𝑞 cos(𝜔𝑚 𝑡 − 4𝜋
3⁄ ) 1 + 2𝑞 cos(𝜔𝑚 𝑡) 1 + 2𝑞 cos(𝜔𝑚 𝑡 − 2𝜋

3⁄ )]
 
 
 

(8) 

Where 𝜔𝑚 = ( 𝜔𝑜 +  𝜔𝑖) which gives reverse phase 

displacement angle between input and output (i.e. 𝛷𝑖 =
 −𝛷𝑜), combining the two equation yields the input 

displacement factor control [6], [7], [9], [16], [18]-[23], 

[24]-[27]. 

This results in the direct transfer function technique, 

which is valid in the sense that the output voltage 

corresponds to the demand voltage. However, in order for 

this to work, the demand voltage must always fit inside the 

input voltage envelope (Tseq). As seen in Figure 5, this 

denotes the highest output voltage that may be 

synthesised, which in this instance is 50%. The output 

voltage ratio can be expanded by dispersing the null output 

switching states (i.e., those that link the output terminals to 

the same input terminal), as shown in Figure 6. Therefore, 

increasing the voltage ratio by adding the common-mode 

voltage to the demand voltage results in a higher voltage 

ratio of (√3/2 =  87%), as shown in the following 

equation: 

 

𝑉𝑜 = 𝑞𝑉𝑖𝑚 [

cos(𝜔𝑜 𝑡) − 1

6
 cos(3𝜔𝑜 𝑡) + 1

2√3
 cos(3𝜔𝑖 𝑡)

cos(𝜔𝑜 𝑡 + 2𝜋
3⁄ ) − 1

6
 cos(3𝜔𝑜 𝑡) + 1

2√3
 cos(3𝜔𝑖 𝑡)

cos(𝜔𝑜 𝑡 + 4𝜋
3⁄ ) − 1

6
 cos(3𝜔𝑜 𝑡) + 1

2√3
 cos(3𝜔𝑖 𝑡)

]          (9) 

 

 

Figure. 5 Maximum voltage achieved of 50%  
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Figure .6 Maximum voltage achieved of 87%  

 

3.1. Venturini Modulation Method 

 

The first approach of Venturini is defined by using the 

duty cycle matrix approach, as presented in equations (7) 

and (8), which can be arranged as: 

𝑚𝐾𝑗 =
𝑡𝐾𝑗

𝑇𝑠𝑒𝑞

=
1

3
[1 +

2𝑣𝐾𝑣𝑗

𝑉𝑖𝑚
2 ]                                               (9) 

Where 𝐾 = 𝐴, 𝐵, 𝐶 and 𝑗 = 𝑎, 𝑏, 𝑐. 
Though the target voltage will never be greater than 50% 

of the input voltage due to the impossibility of effectively 

applying these formulae. As a result, the Venturini optimal 

method is applied, which uses the common-mode 

approach to boost the output voltage ratio to 87%. 

However, a real-time model cannot actually use this 

approach, hence it can be expressed as follows instead: 

 

𝑚𝐾𝑗 =
1

3
[1 +

2𝑣𝐾𝑣𝑗

𝑉𝑖𝑚
2 +

4𝑞

3√3
sin(𝜔𝑖𝑡 + 𝛽𝐾) ∗ sin(3𝜔𝑖𝑡)]     (10) 

 

Where 𝐾 = 𝐴, 𝐵, 𝐶 , 𝛽
𝐾

= 0, 2𝜋
3⁄ , 4𝜋

3⁄  and 𝑗 = 𝑎, 𝑏, 𝑐 

Additionally, modern processors are capable of 

deriving this method voluntarily, and the input 

displacement factor control can be demonstrated. 

However, it will come at the expense of the maximum 

synthesised output voltage [4], [6], [7], [10], [12], [14]-

[16], [18], [27]-[29]. 

 

3.2 Scalar Modulation Method 

 

The scalar modulation approach [11] on the direct 

calculation of the switching signals on instant 

measurements of the input voltage. The following 

formulae compare the magnitude of the input voltages 

with the instant measurement: 

𝑚𝐿𝑗 = [
(𝑣𝑗 − 𝑣𝑀) ∗ 𝑉𝐿

1.5𝑉𝑖 ∗ 𝑚2
]                                                     (11) 

𝑚𝐾𝑗 = [
(𝑣𝑗 − 𝑣𝑀) ∗ 𝑉𝐾

1.5𝑉𝑖 ∗ 𝑚2
]                                                    (12) 

𝑚𝑀𝑗 = 1 − (𝑚𝐿𝑗 + 𝑚𝐾𝑗)                                                   (13) 

Where 𝑗 = 𝑎, 𝑏, 𝑐 

Additionally, by combining the common-mode (i.e., 

adding the third harmonic) with the demand voltage, a 

voltage ratio of up to 87% can be achieved. The switching 

timing is the same as Venturini's method, despite 

significant changes. The maximum output voltage ratio (𝑞) 

in the scalar approach is fixed at (√3/2 =  87%), which is 

the fundamental distinction between it and the Venturini 

approach. As a result, the output voltage quality is 

unaffected by this approach; nevertheless, when the 

Venturini's approach is better, worse voltage quality may 

be observed at low switching frequencies. The duty cycle 

and modulation are expressed as: 

𝑚𝐾𝑗 =
1

3
[1 +

2𝑣𝐾𝑣𝑗

𝑉𝑖𝑚
2 +

2

3
sin(𝜔𝑖𝑡 + 𝛽𝐾) ∗ sin(3𝜔𝑖𝑡)]           (14) 

 

3.3 Optimum Venturini Modulation Method 

 

In this method the third harmonic of the input and 

output voltage frequency is added to obtain the modulation 

matrix. Additionally, the voltage transfer ratio of this 

method is 86.6%. The voltage equations are given as: 

[𝑉𝑜(𝑡)] = [

𝑉𝑎(𝑡)
𝑉𝑏(𝑡)

𝑉𝑐(𝑡)
] 

[𝑉𝑜(𝑡)] =
𝑞 ∗ 𝑉𝑖𝑚 ∗

[
 
 
 

cos(𝜔𝑜 𝑡) − 1

6
 cos(3𝜔𝑜 𝑡) + 1

2√3
 cos(3𝜔𝑖 𝑡)

cos(𝜔𝑜 𝑡 + 2𝜋
3⁄ ) − 1

6
 cos(3𝜔𝑜 𝑡) + 1

2√3
 cos(3𝜔𝑖 𝑡)

cos(𝜔𝑜 𝑡 + 4𝜋
3⁄ ) − 1

6
 cos(3𝜔𝑜 𝑡) + 1

2√3
 cos(3𝜔𝑖 𝑡)]

 
 
 
                           (15) 

Assuming a unity displacement power factor, the 

modulation matrix can be derived from the following 

equation: 

𝑚𝐾𝑗 =
1

3
[
1

3
+

2𝑣𝐾𝑣𝑗

3𝑉𝑖𝑚
2 +

4𝑞

9√3
∗ sin(𝜔𝑖𝑡 + 𝛽𝐾) ∗ sin(3𝜔𝑖𝑡)]  (16) 

For 𝐾 = 𝐴, 𝐵, 𝐶 and 𝑗 = 𝑎, 𝑏, 𝑐 and 𝛽
𝐾

=0, -2π/3, 2π/3. 

 

4. Stability of Matrix Converter 

 

Matrix converters have superior advantages over other 

converters used as drives, particularly in that they have no 

bulky energy storage devices (and hence have a smaller 

size) and they have better input power quality in terms of 

displacement power factor, which provides sinusoidal 

waveforms of input currents and output voltages and unity 

input displacement factor. However, like any other type of 

converters the switching action in matrix converters tends 

to distort the input current with harmonics, and hence 

distort network voltages and affect other systems. 

Therefore, it is necessary to equip the converter with an 

input filter providing compliance of design standards to 

limit the electromagnetic interference and dampen the 

sudden transient voltages from the supply, which protects 

not only the converter but also the load, so it improves the 

whole system’s reliability [4], [6], [7], [14]–[16], [29]–

[31]. 

Filters can affect system stability. The stable system 

can become unstable due to the type of the converter or the 

applied control method. This problem becomes crucial 

when the control design has a very fast closed-loop 

response, so any disturbance caused by the input voltage 

or the motor system itself drives the system to be unstable 

(i.e. driving the output power beyond acceptable levels). 

This problem begins with small voltage distortion, which 

is then used to calculate the demanded duty cycle of the 

converter (undertaken by the controller) and the amplitude 

of the distorted signal becomes more viable, which 

eventually leads to unstable operation [16], [21], [28]. 
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In nonlinear system such as the matrix converters, the 

solution transient of the frequency domain analysis cannot 

be simulated, as it does not have information on how the 

steady state system behaves to perturbations. Therefore, 

frequency domain techniques are not adequate for testing 

stability of such systems, thus a complementary technique 

of stability analysis needs to be used. The most common 

stability analysis types used for examine the stability of 

such system are small-signal analysis and large-signal 

analysis. In small signal regime the equations of the 

system need to be linearized about an operating point, then 

the effect of small signal perturbations needs to be 

neglected. However, for large signal regime the equations 

of the system are linearized about large-signal periodic 

regime; both have different purposes and lead to different 

stability analysis.  

 

4.1 Small-Signal Analysis 

 

If the system encloses in one or more small-signal 

independent sources of which the solution is linear 

regarding these input sources then it can be analyzed. 

Similar to the DC solution the small signal regime has the 

same stability properties, which are acquired by setting 

every input source to zero value. This can be derived due 

to the simple fact that the system is linear to these sources. 

Moreover, the superposition approach can fulfill these 

requirements, so the stability analysis will be identical to 

the DC solutions. By suppressing the time varying input 

sources, the small signal stability analysis can be done. 

The system response due to any disturbance of any 

frequency can be analyzed by linearizing it about an 

operating point (i.e. DC solution). Hence, if small signal 

stability can be defined as being when the system 

oscillates by means of a small disturbance that can be 

damped, such that the state variables of the system do not 

deviate much for small time, the system is defined as 

stable. This can be affected by many aspects such as initial 

conditions, control devices used and the system itself.  

From this, any system cannot function practically if it 

is unstable in terms of small signal analysis; in other 

words, any system needs to be examined by small signal 

analysis under definite functioning conditions. However, 

this method has slow computational speed, and deeper 

examination of the physical cause of system instability 

cannot be undertaken, which is considered as its main 

weakness. The Lyapunov linearized method offers a 

beneficial tool for small signal analysis, which is based on 

the productive outcomes of Eigen solution analysis, which 

have been extensively used in small signal analysis. 

Maximum voltage transfer ration of a matrix converter 

model using small signal analysis was developed in, 

facilitating the calculation of maximum voltage ratio and 

the cut-off frequency of the input filter for stable 

operation. This was proved through simulation and 

experimental results [7], [14], [16], [32]. 

In small signal analysis was performed using the 

migration of eigenvalues of a linearized state matrix of 

different designs of input filter and non-ideal power 

supply, and the instability occurrence was checked. 

Moreover, the maximum power limit of the converter as 

function of input filter and power supply parameters was 

developed, which simplified the design procedure of input 

filter.  

Another small signal model was examined for two 

different types of load: passive R-L load and an induction 

motor. The model was used to study the stability of the 

system using the eigenvalue locus, which then proved to 

be affected by the system parameters, like source 

impedance, filter elements and filter time constant. 

However, the experimental results showed a significant 

difference compared with small signal model, which is due 

to the discrete components and digital control. 

 

4.2 Large-Signal Analysis 

 

The ability of a certain system to move from one 

steady state operating point caused by a certain 

disturbance to another is defined as large signal stability. It 

includes major disturbances like faults, switching failures, 

sudden load change etc. so its main objective is to examine 

if the system will return to steady state condition or not. In 

a large signal model based on physical observation of 

matrix converter was examined, and by approximating the 

system performance using this approach the stability of the 

system was determined, and the nonlinear reasons behind 

the instability phenomena appreciated. The instability 

regions and the physical reasons behind them were 

identified, and the method is useful for certain estimations 

for adequate components used for better design [19], [24], 

[27]. 

 

4.3 State Space Analysis 

 

A unified methodology of treating wide range of 

problems in time domain analysis is provided using state 

space modelling. This method assumes that development 

over time for a certain system can be determined using 

series of unobserved vectors, which are related with a 

series of observations; this relationship is known as state 

space model. The quantities representing the state are 

known as state variables, and the theoretical space spanned 

by those variables is known as state space. For instance, 

for a moving car, the speed of the car and the position of 

other cars on the road can be presented as state variables, 

yet the selection of the state variables is not unique, so for 

the last example the states could be the velocity of other 

cars relating them to the car or their positions on the road 

etc. It is worth noting that when choosing different state 

variables, the set of dynamic equations will be different 

for the same system. However, the solution will yield the 

exact same essential characteristics of that system in terms 

of stability, performance and robustness.  

The freedom of selecting the state variables increases 

the flexibility of this approach, but provided that the 

minimum number of state variables should be selected to 

describe a certain system. This is to say, state variables 

should not be too many or too few, but rather it is common 

to choose (𝑛) state variables, where (𝑛) represents the 

order of the system. This approach is handy if the system 

order is determined from its differential equations, as it is 

easy to identify the order of these equations. However, 
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determining the order from system transfer function could 

have errors, because the poles and zeros of a certain 

transfer function might be similar, and hence cancel each 

other. This error could identify an unstable system as 

stable, and vice-versa. This problem can be evaded by 

simply obtaining the state variables from system 

differential equations. Furthermore, another issue that 

should be considered is that the state variables should not 

be linearly dependent in the same state space 

representation. Additionally, in contrast to classical 

control approaches, this approach works directly from 

dynamic system differential equations in time domain. 

This is done by representing the high order differential 

equations by sets of first order equation, which make it 

possible to solve them in time domain. Furthermore, since 

the system can be characterized by first order number of 

inputs and outputs, this method does not distinguish 

between SISO systems and MIMO systems, providing 

more efficient design and analysis. For nonlinear systems, 

state space representation offers direct design and analysis, 

by linearizing about an operation point, which is a totally 

impossible using classical control method. This property 

allows using linear algebraic manipulations to the system, 

which can be easily programmed and analyzed on 

computers. 

State space linear equation consists of two equations; 

the state equation and the output equation, as shown 

below: 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)                                                        (17) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)                                                        (18) 

Where (𝐴, 𝐵, 𝐶, 𝐷) are the coefficient matrices 

provided that the row dimensions should equal the order of 

the system, hence the dimensions of matrices (𝐴, 𝐵, 𝐶, 𝐷) 

should be as (𝑛 × 𝑛), (𝑛 × 𝑟), (𝑝 × 𝑛), (𝑝 × 𝑟) 

respectively. Where (𝑛) is the number of state variables, 

(𝑟) is the number of inputs and (𝑝) is the number of 

outputs [4], [6], [7], [14], [15], [29], [30]. 

 

4.4 Transfer Function Analysis 

 

The overall transfer function is calculated by obtaining 

the transfer function of each component in the system, 

then, with the aid of laws and interconnection relations, 

algebraic equations are produced containing components 

transfer functions, and these equations can be solved in 

frequency domain, which is used to calculate certain input 

in Laplace transform to an output in Laplace transform. 

This approach is useful to derive transfer functions of 

single input single output SISO out of Laplace transform 

of state equations of multiple input multiple output MIMO 

system. Hence, frequency response or root locus of each 

single output from each single input can be obtained. To 

derive the transfer function of a system with n state 

variable from state space model equations (17, and 18) we 

have: 

𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷                                                (19) 

Which is defined as the system transfer function G(s). 

Additionally, by calculating the determinate of 

(𝑠𝐼 − 𝐴), it can be noted that they are the same as the 

product of diagonal elements of it, known as the 

characteristic polynomial of matrix A. The roots of this are 

known as the eigenvalues of matrix A, defined as the 

dynamic behaviour of the system such as natural 

frequency, system type and damping factor. Moreover, a 

“strictly proper” transfer function results if matrix 𝐷 = 0, 

as the degree of numerator is less than that of 

denominator, which is defined as a direct connection 

between input and output. On the other hand, a “proper” 

transfer function results if matrix 𝐷 ≠ 0, as the numerator 

and denominator has the same degree. 

Hence, if no cancelation between poles and zeros of 

transfer function takes place, then the poles of the system 

are the same as the eigenvalues of matrix A. 

Matrix converter drive system can be estimated by a 

State Space linearized model using the input and output 

system dynamic equations. Then feedback control can be 

applied to achieve fast response to demand signal with 

zero steady state error. However, disturbance signals are 

often presented, either from disturbances in input voltages 

or from the load itself (i.e. distorted back e.m.f., machine 

slut harmonics or disturbance from the associated load). 

These disturbance signals affect the output signals, and if 

the controllers are not designed properly, the outcome of 

these signals will drive the system to unstable regions. 

Traditional control approaches such as PID controllers 

cannot offer very high accuracy, especially if system like 

matrix converter drive is considered, thus feedback 

controls are often implemented to efficiently reduce these 

disturbances. It is possible to analyze the noise in the 

output signal by observing the effect of it in the error 

signal, which is fed to the controller. Therefore, feedback 

loop gain should be big over a wide range of disturbance 

frequencies so that it can reach minimal steady state error, 

and hence, to some extent, reject these noises. 

 

4.5 Eigenvalue Analysis 

 

The characteristic polynomial of the system transfer 

function mentioned earlier is equal to the denominator 

polynomial of that system, which is equal to the 

determinate of 𝑆𝐼 − 𝐴, therefore the poles of the transfer 

function are equal to the roots of characteristic equation. 

Using linear algebra, eigenvalues for a linear time 

invariant system can be obtained as: 

𝐴𝑣𝑘 = 𝜆𝑘𝑣𝑘                                                                            (20) 

Where, 𝜆𝑘 represent the eigenvalues of the matrix A, and 

𝑣𝑘 represents the associated eigenvector, which can be 

written as: 

(𝜆𝐼 − 𝐴)𝑣 = 0                                                                       (21) 

and for (𝑣 ≠ 0) this must be true: 

|(𝜆𝐼 − 𝐴)| = 0                                                                      (22) 

Hence, the poles of the matrix A are the same as the 

eigenvalues of matrix A, as the characteristic equation 

roots are the eigenvalues. Furthermore, since the matrix A 

holds information obtained from the characteristic 

equation of the system, it can describe the system 

properties, such as stability and performance, which is 

why it is often called the system’s state-dynamic matrix. 

The stability of the system can be analyzed using this 

approach. If all eigenvalues (i.e. poles) have negative real 

parts, then it implies that the system is asymptotically 

stable. Also, damping factors associated with these 
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negative real eigenvalues are 1.0, which represents an 

exponentially decaying response. However, a damping 

factor less than 1.0 represents an oscillatory response of 

the system. In contrast, positive real part eigenvalues 

represent system instability. 

The methods presented in this section are not the only 

method used, but they are the most common in the field of 

studying the stability of matrix converters. The transfer 

function approach is employed in particular to study the 

effect of each input and its effect on each output in a 

multiple-input multiple-output (MIMO) system. For 

instance, considering a frequency response of an arbitrary 

transfer function like the one shown in Figure7, if any 

input disturbance with frequency of 2.84 𝑟𝑎𝑑/𝑠𝑒𝑐, then 

this signal will be amplified by a scale of 12.6 𝑑𝐵, as it 

represents the natural frequency of this system. However, 

for disturbance with frequency of 15 rad/sec and above the 

effect of this signal will be attenuated naturally by system 

itself. Hence, the spectrum of frequencies that affect the 

system can be identified. 

From this knowledge more appropriate controllers 

and/or filters can be designed for different types of 

disturbances [11], [12], [20]–[22], [24], [25], [27].  

 
Figure. 7 Frequency response of an arbitrary function 

 

5. Case Study: Modelling and Analysis of Matrix 

Converter Drive 

 

It will use Matrix converter drives to control the 

induction motors However, the high starting current 

(several times as large as the rated current) is the most 

significant problem related to this type of machines. 

Matrix converter drives are capable of providing input and 

output sinusoidal waveforms with minimal distortion at 

adjustable input power factor. In addition, it permits this 

without bulky DC link energy storage devices, which 

makes it smaller and more compact. This helps to build 

small and compact drives. One example is to design a 

built-in drive which is fit inside the motor case. This 

considered as preferred design to be used in aerospace or 

military applications. 

However, matrix converters have stability problems, 

which are affected by; maximum output power allowed, 

input voltage measurement, input filter, input current and 

voltage distortion, duty cycle calculation and filter time 

constant. 

This section will explore a general steady state analysis 

of the whole matrix converter drive system feeding and 

induction motor in 𝑑 − 𝑞 reference frames, provided that 

the operation is under constant 𝑉𝑜𝑙𝑡/𝐻𝑒𝑟𝑡𝑧 to keep 

constant flux in the machine. This will be done using a 

state space model, in which the stability of the system will 

be analyzed. 

 

5.1 Dynamic State Space Modelling 

 

The system presented in this section has a modification 

to the one presented in by adding another state, which is 

the motor speed. The system diagram shown in Figure 8 

involves of a three-phase power supply fed an input filter 

then to an induction motor through the matrix converter, 

additionally, it is equipped with a digital low pass filter to 

provide clear reference voltage for switching the devices. 

These voltages are taken from capacitor voltage i.e. after 

input filter, and then transformed to 𝑑 − 𝑞 reference 

frames, then back to three-phase frame again to produce 

modulation signals. Small signal analysis is carried out to 

determine the stability of the modelled system under 

constant volt per hertz, which to insure constant flux in the 

machine [14], [16]. 

 

 

Figure .8 Schematic showing matrix converter drive 

system  

 

Firstly the input voltage equations transferred to 

synchronous reference frame are presented as follows: 

𝑉𝑑𝑔 = 𝑅𝑔𝐼𝑑𝑔 + 𝐿𝑔

𝑑

𝑑𝑡
𝐼𝑑𝑔 + 𝜔𝑝𝐿𝑔𝐼𝑞𝑔 + 𝑅𝑓(𝐼𝑑𝑔 − 𝐼𝑑𝑓)

+ 𝑉𝑑𝑝     ( 𝑑 − 𝑎𝑥𝑖𝑠 )                           (23) 

𝑉𝑞𝑔 = 𝑅𝑔𝐼𝑞𝑔 + 𝐿𝑔

𝑑

𝑑𝑡
𝐼𝑞𝑔 − 𝜔𝑝𝐿𝑔𝐼𝑑𝑔 + 𝑅𝑓(𝐼𝑞𝑔 − 𝐼𝑞𝑓)

+ 𝑉𝑞𝑝      (𝑞 − 𝑎𝑥𝑖𝑠)                             (24) 

Where: 𝑉𝑑𝑞𝑔 – source voltage 𝑑 − 𝑞 axis frames. 

  𝑉𝑑𝑞𝑝 – input capacitor voltage 𝑑 − 𝑞 axis frames. 

  𝐼𝑑𝑔  – input current 𝑑𝑞 axis frames. 

  𝜔𝑝 – frequency of the supply. 

Induction motor stator dynamic equation in 𝑑 − 𝑞 axis 

can be presented as: 

𝑉𝑑𝑠 = 𝑅𝑠𝐼𝑑𝑠 +
𝑑

𝑑𝑡
𝜑𝑑𝑠 − 𝜔𝑠𝜑𝑞𝑠      𝑑 − 𝑎𝑥𝑖𝑠                   (25) 

𝑉𝑞𝑠 = 𝑅𝑠𝐼𝑞𝑠 +
𝑑

𝑑𝑡
𝜑𝑞𝑠 + 𝜔𝑠𝜑𝑑𝑠      𝑞 − 𝑎𝑥𝑖𝑠                    (26) 
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Induction motor rotor equations are presented as 

follows, provided that the rotor is squirrel cage type and it 

is short circuited i.e. zero voltage, hence: 

0 = 𝑅𝑟𝐼𝑑𝑟 +
𝑑

𝑑𝑡
𝜑𝑑𝑟 − (𝜔𝑠 − 𝜔𝑟)𝜑𝑞𝑟       𝑑 − 𝑎𝑥𝑖𝑠                   (27) 

0 = 𝑅𝑟𝐼𝑞𝑟 +
𝑑

𝑑𝑡
𝜑𝑞𝑟 − (𝜔𝑠 − 𝜔𝑟)𝜑𝑑𝑟      𝑞 − 𝑎𝑥𝑖𝑠                   (28) 

Where: Idqs – stator currents in 𝑑𝑞 axis frames. 

  Idqr – rotor currents in 𝑑𝑞 axis frames. 

  Vdqs – stator voltages in 𝑑𝑞 axis frames. 

Rs – stator resistance. 

  Rr – rotor resistance. 

 𝜔𝑟 – rotor frequency. 

𝜑
𝑑𝑞𝑠

 – stator fluxes in dq frames. 

𝜑
𝑑𝑞𝑟

 – rotor fluxes in dq frames. 

Stator and rotor linkage fluxes are presented as: 

𝜑𝑑𝑠 = 𝐿𝑠𝐼𝑑𝑠 + 𝐿𝑚𝐼𝑑𝑟      𝑑 − 𝑎𝑥𝑖𝑠                                      (29) 

𝜑𝑞𝑠 = 𝐿𝑠𝐼𝑞𝑠 + 𝐿𝑚𝐼𝑞𝑟      𝑞 − 𝑎𝑥𝑖𝑠                                      (30) 

𝜑𝑑𝑟 = 𝐿𝑟𝐼𝑑𝑟 + 𝐿𝑚𝐼𝑑𝑠      𝑑 − 𝑎𝑥𝑖𝑠                                     (31) 

𝜑𝑞𝑟 = 𝐿𝑟𝐼𝑞𝑟 + 𝐿𝑚𝐼𝑞𝑠     𝑞 − 𝑎𝑥𝑖𝑠                                      (32) 

 

Where: Lm – the mutual inductance between rotor and 

stator. 

 

Input filter capacitor voltage dynamic equations can be 

presented as follows: 

𝐶𝑓

𝑑

𝑑𝑡
𝑉𝑎𝑏𝑐𝑝 = 𝐼𝑎𝑏𝑐𝑔 − 𝐼𝑎𝑏𝑐𝑝                                                (33) 

Where: Vabcp – input capacitor voltages. 

  Iabcp – input currents of matrix converter. 

  Iabcg – input supply currents. 

Output and input currents and voltages are related as 

shown below: 

𝑉𝑎𝑏𝑐𝑠 = [𝑆𝑎𝑏𝑐] 𝑉𝑎𝑏𝑐𝑝                                                             (34) 

𝐼𝑎𝑏𝑐𝑝 = [𝑆𝑎𝑏𝑐]
𝑇 𝐼𝑎𝑏𝑐𝑠                                                             (35) 

Where: [Sabc] is switching signal matrix. 

 

𝑉𝑎𝑏𝑐𝑠 = [𝑉𝑎𝑠 𝑉𝑏𝑠 𝑉𝑐𝑠]
𝑇       𝑉𝑎𝑏𝑐𝑝 = [𝑉𝑎𝑝 𝑉𝑏𝑝 𝑉𝑐𝑝]𝑇 

𝐼𝑎𝑏𝑐𝑠 = [𝑉𝑎𝑠 𝑉𝑏𝑠 𝑉𝑐𝑠]
𝑇        𝐼𝑎𝑏𝑐𝑝 = [𝐼𝑎𝑝 𝐼𝑏𝑝 𝐼𝑐𝑝]𝑇 

 

The dynamic equation of damping resistor of the input 

filter is presented as follows: 

𝐿𝑓

𝑑

𝑑𝑡
𝐼𝑑𝑓 + 𝜔𝑝𝐿𝑔𝐼𝑞𝑓 = 𝑅𝑓(𝐼𝑑𝑔 − 𝐼𝑑𝑓)     𝑑 − 𝑎𝑥𝑖𝑠        (36) 

𝐿𝑓

𝑑

𝑑𝑡
𝐼𝑞𝑓 + 𝜔𝑝𝐿𝑔𝐼𝑑𝑓 = 𝑅𝑓(𝐼𝑞𝑔 − 𝐼𝑞𝑓)     𝑞 − 𝑎𝑥𝑖𝑠        (37) 

 

and likewise dynamic equations of input filter capacitor 

can be presented as follows: 

𝐶𝑓

𝑑

𝑑𝑡
𝑉𝑑𝑝 + 𝜔𝑝𝐶𝑓𝑉𝑞𝑝 = 𝐼𝑑𝑔 − 𝐼𝑑𝑝     𝑑 − 𝑎𝑥𝑖𝑠                (38) 

𝐶𝑓

𝑑

𝑑𝑡
𝑉𝑞𝑝 + 𝜔𝑝𝐶𝑓𝑉𝑑𝑝 = 𝐼𝑞𝑔 − 𝐼𝑞𝑝     𝑞 − 𝑎𝑥𝑖𝑠                 (39) 

 

Since the digital filter does not present phase angle 

difference to input voltage components, then they are 

given in 𝑑 − 𝑞 reference frames, and by substituting 

currents using mapping between input and output currents 

in terms of the modulation matrix components. Hence: 

𝑑

𝑑𝑡
𝑉𝑑𝑓 =

1

𝜏
(𝑉𝑑𝑝 − 𝑉𝑑𝑓)                                                       (40) 

𝑑

𝑑𝑡
𝑉𝑞𝑓 =

1

𝜏
(𝑉𝑞𝑝 − 𝑉𝑞𝑓)                                                        (41) 

 

Where: Vdf – d axis of filter capacitor voltage. 

  Vqf – q axis of filter capacitor voltage. 

  𝜏 – input filter time constant. 

 

Dynamic equation that represents the developed 

electromagnetic torque in the machine is: 

𝑇𝑒 =
3

2
(
𝑃

2
) (𝜑𝑑𝑠𝐼𝑞𝑠 − 𝜑𝑞𝑠𝐼𝑑𝑠)                                            (42) 

𝑇𝑒 =
3

2
(
𝑃

2
)
𝐿𝑚
2

𝐿𝑟

 𝐼𝑑𝑠𝐼𝑞𝑠                                                            (43) 

Rotor speed is presented as: 
𝑑

𝑑𝑡
𝜔𝑟 =

𝑃

2𝐽
(𝑇𝑒 − 𝑇𝐿𝑜𝑎𝑑)                                                     (44) 

Where: J – represent the moment of inertia of the machine. 

  TLoad – load torque. 

  Te – electromagnetic torque. 

  P – number of poles. 

 

Machine mechanical equation is given by: 
𝑑

𝑑𝑡
𝜔𝑟 =

𝑇𝑒 − 𝑇𝐿𝑜𝑎𝑑

𝐽
− 𝐵𝜔𝑟                                                 (45) 

Hence, the previously described dynamic equations 

can be rearranged using small signal analysis and using 

state space forms shown earlier, noting that it should be 

linearized around an operating point so that: 
𝑑

𝑑𝑡
𝑋 = 𝐴𝑋 + 𝐵𝑈                                                                  (46) 

𝑋 = ∆𝑋 + 𝑋0                                                                         (47) 

𝑈 = ∆𝑈 + 𝑈0                                                                         (48) 

 

Where the states are chosen to be as: 

𝑋 = [𝐼𝑞𝑔  𝐼𝑑𝑔  𝐼𝑞𝑓  𝐼𝑑𝑓  𝑉𝑞𝑝  𝑉𝑑𝑝 𝑉𝑞𝑓  𝑉𝑑𝑓  𝜑𝑞𝑠 𝜑𝑑𝑠  𝜑𝑞𝑟 𝜑𝑑𝑟]
𝑇 

The input states are chosen to be the modulation 

signals, which can be presented as input stator voltages in 

dq reference frames, as the operating conditions have been 

obtained for specified stator voltages. These modulation 

signals depend on the input capacitor voltage and the 

output generated voltage. Thus, input states are chosen to 

be as: 

𝑈 = [𝑀𝑞𝑞  𝑀𝑞𝑑  𝑀𝑑𝑞  𝑀𝑑𝑑  𝑇𝐿 ]
𝑇 

Where: 

𝑀𝑞𝑞 = 
𝑉𝑞𝑠 𝑉𝑞𝑓 

𝑉𝑞𝑓
2 + 𝑉𝑑𝑓

2                                                                 (49) 

𝑀𝑞𝑑 = 
𝑉𝑞𝑠 𝑉𝑑𝑓 

𝑉𝑞𝑓
2 + 𝑉𝑑𝑓

2                                                                 (50) 

𝑀𝑑𝑞 = 
𝑉𝑑𝑠 𝑉𝑞𝑓 

𝑉𝑞𝑓
2 + 𝑉𝑑𝑓

2                                                                 (51) 

𝑀𝑑𝑑 = 
𝑉𝑑𝑠 𝑉𝑑𝑓 

𝑉𝑞𝑓
2 + 𝑉𝑑𝑓

2                                                                 (52) 

 

and TL – is the disturbance load torque. 

The output states are selected to be: 

𝑌 = [𝐼𝑞𝑔  𝐼𝑑𝑔  𝑉𝑞𝑝  𝑉𝑑𝑝  𝐼𝑞𝑠  𝐼𝑑𝑠  𝜔]𝑇 

Hence, matrices A and B can be arranged as follows: 
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6. Simulation Results 

 

Complex systems like the one presented in this paper 

has many outputs and they are affected by different inputs. 

Therefore, the method presented here facilitates the 

analysis of multiple-input multiple-output system. This is 

done by generating a matrix of transfer functions, in which 

relates each input state to each output state. And hence, the 

system can be treated as a single-input single-output 

system in terms of analysis approaches. Accordingly, more 

suitable design of controllers and filters can be 

constructed. 

Different analysis approaches will be demonstrated in 

this section. The induction motor parameters are selected 

as shown in Table 1. While the source, and input filter, 

parameters are shown in Table 2. 

 

Table 1 Induction motor parameters 

 

Parameter Value Parameter Value 

Power 30 kw Vs 400 volts 

Poles 4 Cast-iron frame 200L 

Lm 33.633 mH Lls 1.674 mH 

Rs 0.1313 Ω Llr 1.116 mH 

fs 50 Hz Rr 0.06872 Ω 

J 0.31 Kg.m
2
 Type 

squirrel cage 

IM 

 

Table 2 Source and filter parameters 

 

Parameter Value 

Vg 400 volt 

Rg 0.01 Ohm 

Lg 1 mH 

Lf 225 mH 

Rf 10 Ohm 

Cf 27 µF 

 

6.1 Transfer Function analysis and Frequency Response 

 

Computer simulation results have been obtained using 

Matlab (2014) platform. Transfer function analysis was 

carried out in this section, which is done using the method 

explained in section 3. The state space model has been 

coded, and then the state space matrix was converted to a 

matrix that contains transfer functions. This can be 

achieved using “tf” command in Matlab. Additionally, 

Bode approach offers investigating the effect of closed-

loop response of an input on associated output, from the 

knowledge of their open-loop transfer function. Therefore, 

bode plot i.e. frequency response of the transfer functions 

obtained was used to analyse the behaviour of each 

transfer function. Frequency response was obtained using 

“bode“ command in Matlab. In this the relationship 

between each individual input and each individual output 

can be analysed and studied. 

Figure 9 shows the bode plots of the system transfer 

functions for each input and output. For example, an input 

can be chosen and its effect on the output can be analyzed 

throughout the whole frequency spectrum. Considering 

input one in the model with output one can illustrate the 

effect of the voltage modulation index (𝑀𝑞𝑞) on the q-axis 

frame of the input current (𝐼𝑞𝑔), which is taken as an 

output here, this is to see the effect of changing the voltage 

transfer ratio on the input current, this can be 

demonstrated in Figure 10. 

It shows steady DC gain of (40 𝑑𝐵) and (0 degree) 

phase, then the gain reaches (64 𝑑𝐵) at frequency of 

(811 𝐻𝑧) while the phase drops to (−45 𝑑𝑒𝑔𝑟𝑒𝑒𝑠). Then 

the gain drops to (41 𝑑𝐵) when the phase is (-139 

degrees) (pole action). After that, the gain starts to rise 

again to its peak of (69.4 𝑑𝐵) at frequency (942 𝐻𝑧) 

(zero action), and this defines the natural frequency of the 

system. It is worth to note that any disturbances at this 

frequency will be amplified and drive the system to 

unstable operation. The point of zero gain defines the 

crossover frequency which occurs at (9.35 𝑘𝐻𝑧), this 

frequency is critical since the errors at this gain crossover 

are destructive. Gain margin is infinity as the bode plot 

never crossed (-180 degrees), hence there is no phase 

crossover frequency, therefore the gain margin cannot be 

determined, this implies that the system is inherently 

stable, and the phase margin is (5.78 degrees), which is too 

low to have well damped stable system, however, the 

closed loop system is stable as the gain margin is infinite. 

Furthermore, as it is known, the bode plot approach gives 

the closed loop response of the system from the 

knowledge of the open loop transfer function, so by 

examining the system response for a unity feedback using 

a step input signal, the system behaviour can be shown as 

illustrated in Figure 11. It can be noticed that the system 

has oscillation at starting but then it reaches steady state 

after two milliseconds. 

 

 
Figure. 9 Frequency response relating inputs to outputs 
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Figure .10 Frequency response for transfer function 

relating input (Mqq) and output (Iqp) 

 

 
Figure .11 Step response for transfer function relating 

input (𝑀𝑞𝑞) and output (𝐼𝑞𝑝) 

 

Considering another example, the transfer function 

illustrating the relationship between input (𝑀𝑞𝑑) with the 

𝑞 − 𝑎𝑥𝑖𝑠 component of the load current (𝐼𝑞𝑠), which is 

shown in Figure 12. The gain margin of the system is 

(−41.4 𝑑𝐵) at (0 Hz) frequency, and the phase margin is 

(90 degrees) at frequency of (24.6 𝑘𝐻𝑧), which defines 

that any disturbance above this frequency will be 

attenuated. Moreover, it defines that the transfer function 

of this relation is stable. In addition, it can be seen from 

the step response of the unity feedback closed loop 

transfer function shown in Figure 13, which can be seen 

that the system has fast stable response. However, it is 

worth to state that this transfer function has two peak 

points with high gain at low frequency (around the system 

frequency “50 Hz”), this leads the system to be prone to 

stability operation, as those frequencies might be needed 

for normal operation (i.e different speed or load torque 

demands). 

 

 
Figure. 12 Frequency response for transfer function 

relating input (𝑀𝑞𝑑) and output (𝐼𝑞𝑠) 

 

 
Figure. 13Step response for transfer function relating 

input (𝑀𝑞𝑑) and output (𝐼𝑞𝑠) 

 

6.2 Pole-Zero Map Analysis 

 

Similar to the frequency response analysis, pole-zero 

map tools for the same transfer functions was obtained. 

Since the input filter resistance is vital part in input filter, 

it was decided to analyse the effect of changing the value 

of damping resistance and monitor its effect on the 

stability using the pole-zero map analyses, which is based 

on the root locus of each transfer function in the system. 

Using the m-file. The pole-zero maps using “iopzmap” 

command in Matlab were obtained for different values of 

damping resistor (from 0 –  100 𝑂ℎ𝑚). The results are as 

shown in Figure 14. 

Figure 14: Pole-zero maps of the whole system transfer 

functions for different values of Rf 

It can be noticed that changing the damping resistance 

value only affect the inputs (𝐼𝑞𝑔, 𝐼𝑑𝑔, 𝑉𝑞𝑝 and 𝑉𝑑𝑝), the 

system stability increases as the resistance increases, but 

on the expense of the efficiency. This can be illustrated in 

Figure 15, considering the transfer function relating the 

input (𝑀𝑞𝑑) with the output (𝐼𝑞𝑔), the poles and zeros of 

the system are moving toward the negative part of the root 

locus, i.e. more stable system as the resistance increases. 

 

 
Figure. 15 Pole-zero map of the transfer function relating 

input (𝑀𝑞𝑑) and output (𝐼𝑞𝑔) 
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Moreover, changing the values of other input filter 

components like (Cf and Lf) has been considered, and the 

pole-zero maps have been obtained. The results regarding 

the filter inductance were obtained, and it has been found 

that the changing this value does not have significant 

effect on the poles and zeros positions for each transfer 

functions, this can be seen in Figure 16. 

The value of the filter capacitor Cf has been changed 

(from 1µF up to 500µF), and it has been noticed that this 

value has more effect on changing the poles and zeros 

position, yet, it is low effect compared to the variation 

made by changing the value of the damping resistor, 

which can be seen in Figure 17. Therefore, it can be 

concluded that damping resistor has the major effect on 

the system regarding system stability. 

 

 
Figure. 16 Pole-zero maps of the whole system transfer 

functions for different values of Lf. 

 

 
Figure .17 Pole-zero maps of the whole system transfer 

functions for different values of Cf. 

 

6.3 Eigenvalues Analysis Results 

 

The stability of the system has been examined by 

determining the eigenvalues of the matrix (A). The 

eigenvalues that has negative real part are stable, and the 

more positive the more stable the system . On the other 

hand, the positive real eigenvalues represent unstable 

system. The system eigenvalues are obtained using Matlab 

and it can be seen in Figure 18, which shows the dominant 

eigenvalues (i.e. the ones close to the positive real part of 

the plane) which have dominant effect on the stability of a 

system. It can be noticed that the system has an unstable 

eigenvalue at (+268), which defines the system as 

unstable. Therefore, different system parameters have 

been changed and tested in order to manipulate the 

unstable eigenvalue. 

 

 
Figure .18 Dominant Eigenvalues of matrix A 

 

Firstly, the value of filter capacitor has been changed 

(from 1µF up to 500 µF) to see its effect on eigenvalues. It 

has been concluded that unstable eigenvalue remains 

unchanged i.e. the filter capacitor does not alter this value. 

However, other dominant eigenvalues have been changed, 

and simulation results show that increasing the filter 

capacitor force the eigenvalues to move towards the 

unstable region (positive real part), this is illustrated in 

Figure 19. 

 

 
Figure. 19 Dominant Eigenvalues of matrix A with 

different values of Cf 

 

The value of the filter inductance has also been 

changed to try shifting the unstable eigenvalue. The value 

of filter inductance Lf has been varied from (1µH up to 

1mH), and it can be concluded that increasing the value of 

Lf does not alter the unstable eigenvalue. However, it 

forces dominant eigenvalues to move towards the stable 

region i.e. the negative real part as shown in Figure 20. 

 
Figure .20 Dominant Eigenvalues of matrix A with 

different values of Lf 

 

Changing the value of the digital filter time constant is 

another attempt to shift the unstable eigenvalue. This value 

has been changed from (1µsec up to 100msec), and 

consequently the unstable value did not change, instead 
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two eigenvalues were moving towards the positive real 

part of the plane as the value of time constant increased, 

which can be seen in Figure 21. 

 

 
Figure. 21 Dominant Eigenvalues of matrix A with 

different values of digital filter time constant 

 

7. Discussion 

 

Matrix converter system with an input filter, low pass 

digital filter, and an induction motor has been modelled 

and analysed using small signal analysis. Then, it was 

linearized about an operating point, before modelling it as 

a state space model. State variables are selected in a way 

that examine the effect of voltage modulation indices and 

the load disturbance torque on the input current, input 

voltages and stator voltages and currents all in d-q 

reference frames. Using Matlab platform, the system was 

analysed, this was done through converting the state space 

model into a set of transfer functions relating each state 

input to each state output. This way offers the ability of 

studying the effect that each input has on every output 

separately. This is advantageous, because a complicated 

system that has multiple-inputs and multiple-outputs can 

be studied and analysed as simple as a single input-single 

single-output system, which can be done by means of 

classic control theories.  

Bode approach offers the ability of analysing the effect 

of closed-loop response of an input on associated output, 

from the knowledge of their open-loop transfer function. 

Therefore, bode plot i.e. frequency response of the transfer 

functions obtained was used to analyse the behaviour of 

each transfer function. Also, this was confirmed using step 

response for the same transfer function. Moreover, it is 

worth to mention that some of the transfer functions have 

stable operation throughout the whole frequency spectrum 

and have the ability to reject any disturbances. However, 

some other have fragile stability condition which might 

drive the system unstable if the operation condition is 

changed, or if a certain disturbance presented. Others have 

totally unstable response thought the frequency spectrum, 

and it was concluded that motor parameters have major 

effect on the stability. This is particularly stands for the 

motor type and parameters used for this model, it might 

not be the case for each system, besides the focus was on 

the method of extracting transfer function more than 

exploring solutions for system instability. 

Furthermore, it has been concluded that this instability 

might be related to this system only with its specific 

parameters, and/or the operating point used to derive the 

model. Therefore, different system parameters were 

changed to modify the unstable poles and zeros. This was 

tested using the migration of the eigenvalues of matrix 

(A). For example, the damping resistance has the major 

effect on the stability of the system. Choosing a low value 

of the damping resistor Rf gives significant improvement 

of filtering the high frequency components, but on the 

expense of lowering the efficiency of the system. Input 

filter inductor Lf and capacitor Cf were varied separately 

in order to shift the unstable eigenvalue, yet the effect was 

very small. These results were proven using the pole-zero 

maps for each transfer function and it led to the same 

results. Furthermore, the induction motor parameters were 

altered to see their effect on the unstable margin, and it has 

been concluded that rotor and stator resistance have 

significant influence on the unstable eigenvalue, also, the 

magnetising inductance of the rotor has the same effect on 

altering the unstable eigenvalue. Yet, manipulating these 

parameters is beyond the scope of this project. 

Additionally, the selection of state variables, inputs 

and outputs of the state space model was not unique, it 

could be rearranged to relate different input and output 

states. For instance this has been examined by selecting 

the output states to be as same as the state variables, the 

outcome of this would be matrix including transfer 

functions relating same number of input to more outputs 

(in this case 13 state outputs as there is 13 state variables), 

This can be seen in Figure 22. 

Moreover, different state variables can be selected to 

study the effect of other parameters, for example, the 

effect of rotor resistance or magnetising inductance could 

be examined, which has been noted that they significantly 

affect the stability of the system. 

 

 
Figure. 22 Bode plots for transfer functions relating state 

variables to inputs 
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Conclusions 

 

State space model of an AC/AC matrix converter 

system drive feeding induction motor was employed to 

analyse the stability of the system. In this paper steady 

state model was derived and tested in Matlab (2014) 

platform. Also, a new method of analysing the system 

stability was presented, which makes the MIMO system 

possible to be analysed as simple as a SISO system. Using 

various stability methods, like transfer function analysis 

and eigenvalue analysis, which were exploited to examine 

the stability of the system. Using the transfer function 

approach, the system was examined for different cases of 

inputs and outputs, and thereby, this provides a tool to 

design more appropriate controllers and filters for the 

system. Also, this method was tested with different 

numbers of inputs and outputs, which add more credits to 

it. In eigenvalue analysis, it was noticed that the stability is 

significantly affected by the system parameters. Filter 

parameters have huge impact on the stability, and 

simulation results show that filter damping resistor has the 

major effect. Furthermore, motor parameters change as the 

temperature changes, and hence the stability of the system 

can be affected. Therefore, a model that includes equations 

that can describe this change will be a worthy start point 

for future studies. 
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