Uniaxial Tension Behavior of FeNiCrCoAl and FeNiCrCoTi Complex Concentrated Alloys: A Molecular Dynamics Approach

Authors

  • Dheyaa F. Kadhim Department of Studies and Planning, University of Thi-Qar, Nasiriyah, 64001, Iraq https://orcid.org/0009-0003-4754-1461
  • Zainalabden A. Ibrahim Department of Bureau Affairs, University of Thi-Qar, Nasiriyah, 64001, Iraq
  • Falih H. Saddam Alazzawi Department of Mechanical Engineering, College of Engineering, University of Thi-Qar, Nasiriyah, 64001, Iraq

DOI:

https://doi.org/10.31663/utjes.14.1.659

Keywords:

Complex concentrated alloys, Tension properties, Molecular dynamics

Abstract

Complex concentrated alloys have been thoroughly examined for their excellent mechanical properties. In the present study, phase transitions and mechanisms of dislocation for FeNiCrCoAl and FeNiCrCoTi complex concentrated alloys were examined using classical molecular dynamics simulations under uniaxial tension. The (LAMMPS) code was used to simulate CCAs systems by using EAM potentials. The effect of strain rate change has been taken into account. The results show that at the early plastic stage, the main deformation behavior is the transition from FCC to HCP phase. Moreover, tensile characteristics are negatively affected by strain rate rise.  At strain rate value of , for FeNiCrCoAl, elastic modulus and density are computed to be  and . Whereas, for FeNiCrCoTi, elastic modulus and density are calculated to be  and . It can be noticed that elasticity modulus of FeNiCrCoAl is two times greater than that of FeNiCrCoTi. In contrast, young modulus of complex concentrated alloys decreases succinctly when the strain rate increases to a value of . Under tensile deformation, the movement direction and impact on mechanical properties of the prevalent 1/6 <112> Shockley partial dislocations are analyzed.

References

Alabd Alhafez, I., Ruestes, C. J., Bringa, E. M., & Urbassek, H. M. (2019). Nanoindentation into a high-entropy alloy – An atomistic study. Journal of Alloys and Compounds, 803, 618–624. https://doi.org/10.1016/j.jallcom.2019.06.277

Bhattacharjee, T., Wani, I. S., Sheikh, S., Clark, I. T., Okawa, T., Guo, S., Bhattacharjee, P. P., & Tsuji, N. (2018). Simultaneous Strength-Ductility Enhancement of a Nano-Lamellar AlCoCrFeNi2.1 Eutectic High Entropy Alloy by Cryo-Rolling and Annealing. Scientific Reports, 8(1), 3276. https://doi.org/10.1038/s41598-018-21385-y

Fan, P., Katiyar, N. K., Zhou, X., & Goel, S. (2022). Uniaxial pulling and nano-scratching of a newly synthesized high entropy alloy. APL Materials, 10(11). https://doi.org/10.1063/5.0128135

Fang, Q., Chen, Y., Li, J., Jiang, C., Liu, B., Liu, Y., & Liaw, P. K. (2019). Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys. International Journal of Plasticity, 114, 161–173. https://doi.org/10.1016/j.ijplas.2018.10.014

Farkas, D., & Caro, A. (2020). Model interatomic potentials for Fe–Ni–Cr–Co–Al high-entropy alloys. Journal of Materials Research, 35(22), 3031–3040. https://doi.org/10.1557/jmr.2020.294

Honeycutt, J. Dana., & Andersen, H. C. (1987). Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. The Journal of Physical Chemistry, 91(19), 4950–4963. https://doi.org/10.1021/j100303a014

Kim, J.-K., Kim, J. H., Park, H., Kim, J.-S., Yang, G., Kim, R., Song, T., Suh, D.-W., & Kim, J. (2022). Temperature-dependent universal dislocation structures and transition of plasticity enhancing mechanisms of the Fe40Mn40Co10Cr10 high entropy alloy. International Journal of Plasticity, 148, 103148. https://doi.org/10.1016/j.ijplas.2021.103148

Li, J., Chen, H., Fang, Q., Jiang, C., Liu, Y., & Liaw, P. K. (2020). Unraveling the dislocation–precipitate interactions in high-entropy alloys. International Journal of Plasticity, 133, 102819. https://doi.org/10.1016/j.ijplas.2020.102819

Li, Q., Bao, X., Zhao, S., Zhu, Y., Lan, Y., Feng, X., & Zhang, Q. (2021). The Influence of AlFeNiCrCoTi High-Entropy Alloy on Microstructure, Mechanical Properties and Tribological Behaviors of Aluminum Matrix Composites. International Journal of Metalcasting, 15(1), 281–291. https://doi.org/10.1007/s40962-020-00462-x

Liang, A., Goodelman, D. C., Hodge, A. M., Farkas, D., & Branicio, P. S. (2023). CoFeNiTi and CrFeNiTi high entropy alloy thin films microstructure formation. Acta Materialia, 257, 119163. https://doi.org/10.1016/j.actamat.2023.119163

Liu, C., Yang, Y., & Xia, Z. (2020). Deformation mechanism in Al (0.1) CoCrFeNi Sigma3(111)[11̄0] high entropy alloys – molecular dynamics simulations. RSC Advances, 10(46), 27688–27696. https://doi.org/10.1039/D0RA01885F

Luo, G., Li, L., Fang, Q., Li, J., Tian, Y., Liu, Y., Liu, B., Peng, J., & Liaw, P. K. (2021). Microstructural evolution and mechanical properties of FeCoCrNiCu high entropy alloys: a microstructure-based constitutive model and a molecular dynamics simulation study. Applied Mathematics and Mechanics, 42(8), 1109–1122. https://doi.org/10.1007/s10483-021-2756-9

Mu, R., Wang, Y., Niu, S., Sun, K., & Yang, Z. (2023). Wetting of FeCoCrNiTi0.2 high entropy alloy on the (HfZrTiTaNb)C high entropy ceramic. Journal of the European Ceramic Society, 43(16), 7263–7272. https://doi.org/10.1016/j.jeurceramsoc.2023.07.065

Otto, F., Dlouhý, A., Somsen, Ch., Bei, H., Eggeler, G., & George, E. P. (2013). The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 61(15), 5743–5755. https://doi.org/10.1016/j.actamat.2013.06.018

Plimpton, S. (1995). Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 117(1), 1–19. https://doi.org/10.1006/jcph.1995.1039

Qi, Y., Xu, H., He, T., Wang, M., & Feng, M. (2021). Atomistic simulation of deformation behaviors polycrystalline CoCrFeMnNi high-entropy alloy under uniaxial loading. International Journal of Refractory Metals and Hard Materials, 95, 105415. https://doi.org/10.1016/j.ijrmhm.2020.105415

Qi, Y., Zhao, M., & Feng, M. (2021). Molecular simulation of microstructure evolution and plastic deformation of nanocrystalline CoCrFeMnNi high-entropy alloy under tension and compression. Journal of Alloys and Compounds, 851, 156923. https://doi.org/10.1016/j.jallcom.2020.156923

Qin, G., Xue, W., Chen, R., Zheng, H., Wang, L., Su, Y., Ding, H., Guo, J., & Fu, H. (2019). Grain refinement and FCC phase formation in AlCoCrFeNi high entropy alloys by the addition of carbon. Materialia, 6, 100259. https://doi.org/10.1016/j.mtla.2019.100259

Rao, K. R., Dewangan, S. K., Seikh, A. H., Sinha, S. K., & Ahn, B. (2024). Microstructure and Mechanical Characteristics of AlCoCrFeNi-Based ODS High-Entropy Alloys Consolidated by Vacuum Hot Pressing. Metals and Materials International, 30(3), 726–734. https://doi.org/10.1007/s12540-023-01530-7

Raturi, A., Biswas, K., & Gurao, N. P. (2021). A mechanistic perspective on the kinetics of plastic deformation in FCC High Entropy Alloys: Effect of strain, strain rate and temperature. Scripta Materialia, 197, 113809. https://doi.org/10.1016/j.scriptamat.2021.113809

Ren, H., Chen, R. R., Gao, X. F., Liu, T., Qin, G., Wu, S. P., & Guo, J. J. (2022). Phase formation and mechanical features in (AlCoCrFeNi)100-Hf high-entropy alloys: The role of Hf. Materials Science and Engineering: A, 858, 144156. https://doi.org/10.1016/j.msea.2022.144156

Ruestes, C. J., & Farkas, D. (2022). Dislocation emission and propagation under a nano-indenter in a model high entropy alloy. Computational Materials Science, 205, 111218. https://doi.org/10.1016/j.commatsci.2022.111218

Stukowski, A. (2010). Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18(1), 015012. https://doi.org/10.1088/0965-0393/18/1/015012

Stukowski, A., & Albe, K. (2010). Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modelling and Simulation in Materials Science and Engineering, 18(8), 085001. https://doi.org/10.1088/0965-0393/18/8/085001

Tsai, C.-W., Tsai, M.-H., Tsai, K.-Y., Chang, S.-Y., Yeh, J.-W., & Yeh, A.-C. (2015). Microstructure and tensile properties of Al 0.5 CoCrCuFeNi alloys produced by simple rolling and annealing. Materials Science and Technology, 31(10), 1178–1183. https://doi.org/10.1179/1743284714Y.0000000754

Verlet, L. (1967). Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, 159(1), 98–103. https://doi.org/10.1103/PhysRev.159.98

Wang, L., Qiao, J. W., Ma, S. G., Jiao, Z. M., Zhang, T. W., Chen, G., Zhao, D., Zhang, Y., & Wang, Z. H. (2018). Mechanical response and deformation behavior of Al0.6CoCrFeNi high-entropy alloys upon dynamic loading. Materials Science and Engineering: A, 727, 208–213. https://doi.org/10.1016/j.msea.2018.05.001

Wang, Q., Lu, Y., Yu, Q., & Zhang, Z. (2018). The Exceptional Strong Face-centered Cubic Phase and Semi-coherent Phase Boundary in a Eutectic Dual-phase High Entropy Alloy AlCoCrFeNi. Scientific Reports, 8(1), 14910. https://doi.org/10.1038/s41598-018-33330-0

Wu, J., Yang, Z., Xian, J., Gao, X., Lin, D., & Song, H. (2020). Structural and Thermodynamic Properties of the High-Entropy Alloy AlCoCrFeNi Based on First-Principles Calculations. Frontiers in Materials, 7. https://doi.org/10.3389/fmats.2020.590143

Yang, F., Cai, J., Zhang, Y., & Lin, J. (2022). Temperature and Crystalline Orientation-Dependent Plastic Deformation of FeNiCrCoMn High-Entropy Alloy by Molecular Dynamics Simulation. Metals, 12(12), 2138. https://doi.org/10.3390/met12122138

Yang, T., Tang, Z., Xie, X., Carroll, R., Wang, G., Wang, Y., Dahmen, K. A., Liaw, P. K., & Zhang, Y. (2017). Deformation mechanisms of Al0.1CoCrFeNi at elevated temperatures. Materials Science and Engineering: A, 684, 552–558. https://doi.org/10.1016/j.msea.2016.12.110

Yang, T., Xia, S., Liu, S., Wang, C., Liu, S., Zhang, Y., Xue, J., Yan, S., & Wang, Y. (2015). Effects of AL addition on microstructure and mechanical properties of Al CoCrFeNi High-entropy alloy. Materials Science and Engineering: A, 648, 15–22. https://doi.org/10.1016/j.msea.2015.09.034

Zhu, Y. T., Liao, X. Z., & Wu, X. L. (2012). Deformation twinning in nanocrystalline materials. Progress in Materials Science, 57(1), 1–62. https://doi.org/10.1016/j.pmatsci.2011.05.001

Downloads

Published

2024-12-01

How to Cite

Uniaxial Tension Behavior of FeNiCrCoAl and FeNiCrCoTi Complex Concentrated Alloys: A Molecular Dynamics Approach. (2024). University of Thi-Qar Journal for Engineering Sciences, 14(1), 66-76. https://doi.org/10.31663/utjes.14.1.659

Similar Articles

41-50 of 88

You may also start an advanced similarity search for this article.