A Survey on Interference Mitigation for Wireless Body Area Networks
DOI:
https://doi.org/10.31663/utjes.14.1.671Keywords:
Interference mitigation, Wireless body area network, IEEE 802.15.6, Power control, Learning, Game theory, OptimizationAbstract
Wireless body area networks (WBANs) are noteworthy, dependable, and most advantageous development in many health directed applications. WBANs in health system connect tiny sensors to invasive or non-invasive medical equipment for patient examinations utilizing low power wireless technology. When WBANs are utilized in crowded areas or in conjunction with other wireless sensor networks, communication interference can arise. This can lead to unstable signal integrity, which can impair system performance. Thus, interference mitigation needs to be taken into account when designing. In this paper we survey interference mitigation methods used in WBANs, classify them, and finally point to some future research directions in this area. In particular, we start by reviewing sample papers that tackle the interference management problem through classical signal processing and shaping methods. Then we review some works on cooperative communications approaches to encounter this problem. After that we consider approaches that are not centralized through the use of game theoretic formulations. We close our discussion by surveying model free algorithm through learning based approaches.
References
Ah, M., Moungla, H., Younis, M., & Mehaoua, A. (2017). Distributed scheme for interference mitigation of coexisting WBANs using Latin rectangles. 2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), 873–878. https://doi.org/10.1109/CCNC.2017.7983248
Ahmad, I., Ali, S., Ali, F., Junaid, H., & Zaid, F. (2020). Reinforcement Learning-Based Coexistence Interference Management in Wireless Body Area Networks. International Journal of Computer and Systems Engineering, 14(11), 446–453.
Al-Sofi, S. J., Atroshey, S. M. S., & Ali, I. A. (2023). Review of wireless body area networks: protocols, technologies, and applications. Bulletin of Electrical Engineering and Informatics, 12(6), 3677–3689. https://doi.org/10.11591/eei.v12i6.5543
Alabdel Abass, A. A., Alshaheen, H., & Takruri, H. (2024). A game theoretic approach to wireless body area networks interference control. IET Wireless Sensor Systems, 14(3), 72–83. https://doi.org/10.1049/wss2.12077
Alabdel Abass, A. A., Kumbhkar, R., Mandayam, N. B., & Gajic, Z. (2019). WiFi/LTE-U Coexistence: An Evolutionary Game Approach. IEEE Transactions on Cognitive Communications and Networking, 5(1), 44–58. https://doi.org/10.1109/TCCN.2018.2886011
Ali, M. J. (2017). Wireless body area networks: co-channel interference mitigation & avoidance. Université Sorbonne Paris Cité.
Ali, M., Moungla, H., Younis, M., & Mehaoua, A. (2016a). Distributed scheme for interference mitigation of WBANs using predictable channel hopping. 2016 IEEE 18th International Conference on E-Health Networking, Applications and Services (Healthcom), 1–6. https://doi.org/10.1109/HealthCom.2016.7749506
Ali, M., Moungla, H., Younis, M., & Mehaoua, A. (2016b). Inter-WBANs interference mitigation using orthogonal walsh hadamard codes. 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 1–7. https://doi.org/10.1109/PIMRC.2016.7794928
Ashrar, A., Malek, N. A., & Sharaf, A. A. (2018). Mutual Interference Mitigation Schemes on Wireless Body Area Networks (WBANs) A Survey. International Journal of Scientific & Engineering Research, 5(10), 133–147. http://www.paper.edu.cn/en/paper.php?serial_number=200912-965,
Askari, Z., Abouei, J., Jaseemuddin, M., & Anpalagan, A. (2021). Energy-Efficient and Real-Time NOMA Scheduling in IoMT-Based Three-Tier WBANs. IEEE Internet of Things Journal, 8(18), 13975–13990. https://doi.org/10.1109/JIOT.2021.3069659
Askari, Z., Abouei, J., Jaseemuddin, M., Anpalagan, A., & Plataniotis, K. N. (2022). A Q -Learning Approach for Real-Time NOMA Scheduling of Medical Data in UAV-Aided WBANs. IEEE Access, 10, 115074–115091. https://doi.org/10.1109/ACCESS.2022.3218675
B.N., P., & R, J. (2023). A game theory‐based approach for the study of inter‐interference in coexisting wireless body area networks. International Journal of Communication Systems, 36(15). https://doi.org/10.1002/dac.5561
Balevi, E., & Gitlin, R. D. (2018). Stochastic geometry analysis of IEEE 802.15.6 UWB WBAN performance with game theoretical power management. 2018 IEEE 19th Wireless and Microwave Technology Conference (WAMICON), 1–5. https://doi.org/10.1109/WAMICON.2018.8363887
Başar, T., & Olsder, G. J. (1998). Dynamic noncooperative game theory. SIAM.
Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge university press.
Chen, G., Zhan, Y., Sheng, G., Xiao, L., & Wang, Y. (2019). Reinforcement Learning-Based Sensor Access Control for WBANs. IEEE Access, 7, 8483–8494. https://doi.org/10.1109/ACCESS.2018.2889879
Dong, J., & Smith, D. (2013). Coexistence and interference mitigation for wireless body area networks: Improvements using on-body opportunistic relaying. ArXiv Preprint ArXiv:1305.6992.
Drew Fudenberg, J. T. (1991). Game Theory. The MIT Press. https://mitpress.mit.edu/9780262061414/game-theory/
ElDiwany, B. E., Abdellatif, A. A., Mohamed, A., Al-Ali, A., Guizani, M., & Du, X. (2019). On Physical Layer Security in Energy-Efficient Wireless Health Monitoring Applications. ICC 2019 - 2019 IEEE International Conference on Communications (ICC), 1–7. https://doi.org/10.1109/ICC.2019.8761845
George, E. M., & Jacob, L. (2020). Interference Mitigation for Coexisting Wireless Body Area Networks: Distributed Learning Solutions. IEEE Access, 8, 24209–24218. https://doi.org/10.1109/ACCESS.2020.2970581
Ghubaish, A., Salman, T., Zolanvari, M., Unal, D., Al-Ali, A., & Jain, R. (2021). Recent Advances in the Internet-of-Medical-Things (IoMT) Systems Security. IEEE Internet of Things Journal, 8(11), 8707–8718. https://doi.org/10.1109/JIOT.2020.3045653
Goyal, R., Mittal, N., Gupta, L., & Surana, A. (2023). Routing Protocols in Wireless Body Area Networks: Architecture, Challenges, and Classification. Wireless Communications and Mobile Computing, 2023, 1–19. https://doi.org/10.1155/2023/9229297
Hammood, D. A., Rahim, H. A., Alkhayyat, A., Ahmad, R. B., Jusoh, M., & Abbasi, Q. H. (2019). Non-Cooperative Game Theory Approach for Cognitive Cooperative Communication in WBAN. 2019 IEEE International Conference on Smart Instrumentation, Measurement and Application (ICSIMA), 1–5. https://doi.org/10.1109/ICSIMA47653.2019.9057305
Jameel, F., Butt, A., & Munir, U. (2016). Analysis of interference in body area networks over generalized fading. 2016 International Conference on Emerging Technologies (ICET), 1–6. https://doi.org/10.1109/ICET.2016.7813267
Jameel, F., Faisal, Haider, M. A. A., & Butt, A. A. (2017). High SNR analysis of inter-body interference in Body Area Networks. 2017 International Conference on Communication, Computing and Digital Systems (C-CODE), 117–121. https://doi.org/10.1109/C-CODE.2017.7918913
Meharouech, A., Elias, J., Paris, S., & Mehaoua, A. (2015). A game theoretical approach for interference mitigation in Body-to-Body Networks. 2015 IEEE International Conference on Communication Workshop (ICCW), 259–264. https://doi.org/10.1109/ICCW.2015.7247188
Michaelides, C., & Pavlidou, F.-N. (2020). Uplink NOMA in Body Area Networks With Simple Node Pairing Strategies. IEEE Sensors Journal, 20(16), 9596–9603. https://doi.org/10.1109/JSEN.2020.2986674
Mile, A., Okeyo, G., & Kibe, A. (2018). Hybrid IEEE 802.15.6 Wireless Body Area Networks Interference Mitigation Model for High Mobility Interference Scenarios. Wireless Engineering and Technology, 09(02), 34–48. https://doi.org/10.4236/wet.2018.92004
Moosavi, H., & Bui, F. M. (2016). Delay-Aware Optimization of Physical Layer Security in Multi-Hop Wireless Body Area Networks. IEEE Transactions on Information Forensics and Security, 11(9), 1928–1939. https://doi.org/10.1109/TIFS.2016.2566446
Movassaghi, S., Abolhasan, M., & Smith, D. (2013). Interference Mitigation in WBANS: Challenges and Existing Solutions. Advances in Real-Time Information Networks, 2193–2197. https://doi.org/10.5130/aaa.b
Movassaghi, S., Abolhasan, M., Smith, D., & Jamalipour, A. (2014). Joint Energy Harvesting and Internetwork Interference Mitigation amongst Coexisting Wireless Body Area Networks. Proceedings of the 9th International Conference on Body Area Networks. https://doi.org/10.4108/icst.bodynets.2014.257068
Osama, M., Ateya, A. A., Sayed, M. S., Hammad, M., Pławiak, P., Abd El-Latif, A. A., & Elsayed, R. A. (2023). Internet of Medical Things and Healthcare 4.0: Trends, Requirements, Challenges, and Research Directions. Sensors, 23(17), 7435. https://doi.org/10.3390/s23177435
Pavithra, S., & Chitra, S. (2023). Review of Non-Orthogonal Multiple Access Schemes and Challenges in Wireless Body Area Network. 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 267–271. https://doi.org/10.1109/ICACITE57410.2023.10182500
Periyamuthaiah, S., & Vembu, S. (2024). Optimal interference mitigation with deep learningbased channel access in wireless body area networks. International Journal of Communication Systems, 37(15). https://doi.org/10.1002/dac.5883
Rajasekaran, A. S., Sowmiya, L., Maria, A., & Kannadasan, R. (2024). A survey on exploring the challenges and applications of wireless body area networks (WBANs). Cyber Security and Applications, 2, 100047. https://doi.org/10.1016/j.csa.2024.100047
Roy, M., Biswas, D., Aslam, N., & Chowdhury, C. (2022). Reinforcement learning based effective communication strategies for energy harvested WBAN. Ad Hoc Networks, 132, 102880. https://doi.org/10.1016/j.adhoc.2022.102880
Shah, V., Mandayam, N. B., & Goodman, D. J. (1998). Power control for wireless data based on utility and pricing. Ninth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (Cat. No.98TH8361), 3, 1427–1432. https://doi.org/10.1109/PIMRC.1998.731433
Shaik, M. F., Komanapalli, V. L. N., & Subashini, M. M. (2018). A comparative study of interference and mitigation techniques in wireless body area networks. Wireless Personal Communications, 98, 2333–2365.
Shaik, M. F., & Subashini, M. M. (2020). A new approach for Interference Mitigation in Multiple WBAN Using EMR-Rules. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), 266–269. https://doi.org/10.1109/ICACCS48705.2020.9074418
Tawfiq, A., Abouei, J., & Plataniotis, K. N. (2012). Cyclic orthogonal codes in CDMA-based asynchronous Wireless Body Area Networks. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1593–1596. https://doi.org/10.1109/ICASSP.2012.6288198
Wang, J., Sun, Y., Ji, Y., & Luo, S. (2019). Priority-Aware Price-Based Power Control for Co-Located WBANs Using Stackelberg and Bayesian Games. Sensors, 19(12), 2664. https://doi.org/10.3390/s19122664
Wang, L., Zhang, G., Li, J., & Lin, G. (2020). Joint optimization of power control and time slot allocation for wireless body area networks via deep reinforcement learning. Wireless Networks, 26(6), 4507–4516. https://doi.org/10.1007/s11276-020-02353-9
Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8, 279–292.
Wu, X., Nechayev, Y. I., Constantinou, C. C., & Hall, P. S. (2015). Interuser Interference in Adjacent Wireless Body Area Networks. IEEE Transactions on Antennas and Propagation, 63(10), 4496–4504. https://doi.org/10.1109/TAP.2015.2465856
Wu, Y., Liu, W., & Li, K. (2017). Power allocation and relay selection for energy efficient cooperation in wireless sensor networks with energy harvesting. EURASIP Journal on Wireless Communications and Networking, 2017(1), 1–11. https://doi.org/10.1186/s13638-017-0811-9
Xie, Z., Wang, B., Yu, J., Wu, H., Huang, G., Zarei, R., & He, J. (2020). An Optimal Backoff Time-Based Internetwork Interference Mitigation Method in Wireless Body Area Network. Journal of Sensors, 2020, 1–13. https://doi.org/10.1155/2020/4365191
Xin, G., Hu, F., Ling, Z., Na, S., & Jin, C. (2023). Dynamic Scheduling for Minimizing Age Penalty in Resource-Constrained Classified WBANs With Energy Harvesting. IEEE Sensors Journal, 23(19), 23638–23652. https://doi.org/10.1109/JSEN.2023.3285248
Xu, J., Aihuang Guo, Su, S., Hung Nguyen, & Jing Zhou. (2014). A game theory control scheme in medium access for wireless body area network. 10th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM 2014), 404–409. https://doi.org/10.1049/ic.2014.0135
Xuan Wang, & Lin Cai. (2011). Interference Analysis of Co-Existing Wireless Body Area Networks. 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011, 1–5. https://doi.org/10.1109/GLOCOM.2011.6133624
Yaghoubi, M., Ahmed, K., & Miao, Y. (2022). Wireless Body Area Network (WBAN): A Survey on Architecture, Technologies, Energy Consumption, and Security Challenges. Journal of Sensor and Actuator Networks, 11(4), 67. https://doi.org/10.3390/jsan11040067
Yang, W.-B., & Sayrafian-Pour, K. (2011). Interference mitigation for body area networks. 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications, 2193–2197. https://doi.org/10.1109/PIMRC.2011.6139905
Yates, R. D., Sun, Y., Brown, D. R., Kaul, S. K., Modiano, E., & Ulukus, S. (2021). Age of Information: An Introduction and Survey. IEEE Journal on Selected Areas in Communications, 39(5), 1183–1210. https://doi.org/10.1109/JSAC.2021.3065072
Yener, A., & Ulukus, S. (2015). Wireless Physical-Layer Security: Lessons Learned From Information Theory. Proceedings of the IEEE, 103(10), 1814–1825. https://doi.org/10.1109/JPROC.2015.2459592
Zhang, Z., Huang, J., Wang, H., & Fang, H. (2015). Power control and localization of wireless body area networks using semidefinite programming. 2015 2nd International Symposium on Future Information and Communication Technologies for Ubiquitous HealthCare (Ubi-HealthTech), 1–5. https://doi.org/10.1109/Ubi-HealthTech.2015.7203357
Zou, L., Liu, B., Chen, C., & Chen, C. W. (2014). Bayesian game based power control scheme for inter-WBAN interference mitigation. 2014 IEEE Global Communications Conference, 240–245. https://doi.org/10.1109/GLOCOM.2014.7036814
Downloads
Published
Issue
Section
License
Copyright (c) 2024 The Author(s), under exclusive license to the University of Thi-Qar
This work is licensed under a Creative Commons Attribution 4.0 International License.